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Notation

p data dimensionality

q latent dimensionality

n number of data points

Y design matrix containing our data nxp
X matrix of latent variables nxgq
D matrix of interpoint squared distances nxn
K similarities/covariance/kernel nxXn
L Laplacian matrix nxn

Row vector from matrix A given by a;. column vector a ; and
element given by 4; ;.
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Distances and Similarities

» Typical scenario, a data set, Y stored in a matrix of
dimension n X p.

» Proximity data: a data set in form of distances, D, or
similarities K. These matrices are dimension 7 X 7.

» Similarity matrices have large entries when data points are
close.

» Distance matrices have large entries when points are far
apart.
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Multidimensional Scaling

» Multidimensional scaling (MDS) algorithms are
dimensionality reduction for proximity matrices.
» We can move between similarity and squared distance as
follows di,]' = ki,i - Zki’]‘ + k],]
» In MDS this is known as the standard transformation
(Mardia et al., 1979).
» Ifk;j = k(yi:, y;:) is a “kernel” this is the “distance in feature
space” (Scholkopf and Smola, 2001).
» If k; jis an element from a covariance matrix K, it is the
expected squared distance between two samples with that
covariance.
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Note: Centering and Squared Distances

v

Consider matrix form of squared distance,

D = diag (YY")1" - 2YY" + 1diag (YY) .

v

A Centering matrix has the form

H=I1-n"111": H1=0

\4

This implies:

1 NN
_EHDH =HYY'H=YY".

v

i.e. centered square distance matrix is closely related to
centred similarity/kernel.
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Spectral Dimensionality Reduction in Machine
Learning

» Spectral approach to dimensionality reduction.

1. Convert data to a matrix of dimension 7 X n.
2. Visualize data with eigenvectors of matrix.

» Examples:

» isomap (Tenenbaum et al., 2000),

locally linear embeddings (LLE, Roweis and Saul, 2000),

» Laplacian eigenmaps (LE, Belkin and Niyogi, 2003) and

» maximum variance unfolding (MVU, Weinberger et al., 2004).
» Also kernel PCA (Scholkopf et al., 1998; Ham et al., 2004).

v
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Classical Multidimensional Scaling Perspective

» Classical multidimensional scaling (CMDS)
1. Compute an 1 X n squared distance matrix, D.
2. Form the centered “similarity matrix” HKH = —%HDH.
3. Visualize through g principal eigenvectors (as latent matrix
X).
» This algorithm matches squared distances computed in X
to those computed in Y through an L1 error.
» Our Argument:

» Main innovation in ML work: how to compute the squared
distance matrix D.
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Unifying Perspective

» Introduce probabilistic approach to constructing squared
distance matrices.

» Relate isomap, LLE, LE and MVU to the approach.

» Wrap spectral methods in a unifying perspective of
Gaussian random fields and CMDS.
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Maximum Variance Unfolding

Learn a “Kernel” for Dimensionality Reduction
» In maximum variance unfolding (MVU Weinberger et al., 2004):

learn a “kernel matrix” that will allow for dimensionality
reduction.
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Maximum Variance Unfolding

Learn a “Kernel” for Dimensionality Reduction

» In maximum variance unfolding (MVU Weinberger et al., 2004):
learn a “kernel matrix” that will allow for dimensionality
reduction.

» Preserve only local proximity relationships in the data.
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Maximum Variance Unfolding

Learn a “Kernel” for Dimensionality Reduction

» In maximum variance unfolding (MVU Weinberger et al., 2004):
learn a “kernel matrix” that will allow for dimensionality
reduction.

» Preserve only local proximity relationships in the data.

» Take a set of neighbors.
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Maximum Variance Unfolding

Learn a “Kernel” for Dimensionality Reduction

» In maximum variance unfolding (MVU Weinberger et al., 2004):
learn a “kernel matrix” that will allow for dimensionality
reduction.

» Preserve only local proximity relationships in the data.

» Take a set of neighbors.
» Construct a kernel matrix where only distances between
neighbors match data distances.
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Maximum Variance Unfolding

» Optimize elements of K by maximizing! tr (K).

» Subject to squared distance constraints between neighbors

dl‘,]‘ = ki,i - Zkl’,j + k]‘/]‘
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Maximum Entropy Unfolding

New Contribution

» Maximize entropy instead of variance (Jaynes, 1986): MEU
(Lawrence, 2011, 2010).

-/ Imen/tex/talke/mviiMotivateMen


../../../meu/tex/talks/mvuMotivateMeu

Maximum Entropy Unfolding

New Contribution

» Maximize entropy instead of variance (Jaynes, 1986): MEU
(Lawrence, 2011, 2010).

» Entropy and variance are closely related.
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Maximum Entropy Unfolding

New Contribution

» Maximize entropy instead of variance (Jaynes, 1986): MEU
(Lawrence, 2011, 2010).

» Entropy and variance are closely related.

» Maximum entropy leads to a probabilistic model.
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Maximum Entropy Unfolding

New Contribution

» Maximize entropy instead of variance (Jaynes, 1986): MEU
(Lawrence, 2011, 2010).

» Entropy and variance are closely related.
» Maximum entropy leads to a probabilistic model.

» Each spectral approach approximates MEU in some way:.
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Maximum Entropy Unfolding

» Find distribution with maximum entropy subject to
constraints on moments.

» MEU constraints are on expected distances between
neighbors.

iy = {viys) = 2{viyi) + (i)
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Maximum Entropy Unfolding

» Find distribution with maximum entropy subject to
constraints on moments.

» MEU constraints are on expected distances between
neighbors.

di,]' = kl‘,j - Zk,‘,]‘ + k]',]'
which can be written in terms of the covariance.
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Maximum Entropy Unfolding

New Contribution

» Maximize entropy instead of variance (Jaynes, 1986): MEU
(Lawrence, 2011, 2010).
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Maximum Entropy Unfolding

New Contribution

» Maximize entropy instead of variance (Jaynes, 1986): MEU
(Lawrence, 2011, 2010).

» Entropy and variance are closely related.
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Maximum Entropy Unfolding

New Contribution

» Maximize entropy instead of variance (Jaynes, 1986): MEU
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» Entropy and variance are closely related.
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Maximum Entropy Unfolding

New Contribution

» Maximize entropy instead of variance (Jaynes, 1986): MEU
(Lawrence, 2011, 2010).

» Entropy and variance are closely related.
» Maximum entropy leads to a probabilistic model.

» Each spectral approach approximates MEU in some way:.
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Maximum Entropy Unfolding

» Find distribution with maximum entropy subject to
constraints on moments.

» MEU constraints are on expected distances between
neighbors.

iy = {viys) = 2{viyi) + (i)
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Maximum Entropy Unfolding

» Find distribution with maximum entropy subject to
constraints on moments.

» MEU constraints are on expected distances between
neighbors.

di,]' = kl‘,j - Zk,‘,]‘ + k]',]'

which can be written in terms of the covariance.
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Maximum Entropy

» Maximum entropy distribution.

1 1
p(Y) < exp (—Etr (]/YYT)) exp (_E Z Aijd; j
i jeN()
N (i) is neighborhood, {A; j}, Lagrange multipliers.
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Maximum Entropy

» Maximum entropy distribution.
p(Y) o exp (—Lcr (yYYT) . (AD))
2 4

N (i) is neighborhood, {A; j}, Lagrange multipliers.
Lagrange multipliers in sparse matrix A.
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Maximum Entropy

» Maximum entropy distribution.

Lot .
p(Y) = W exp (—Etr ((L +yDYY ))

T7) 2
N (i) is neighborhood, {A; j}, Lagrange multipliers.
Introduce Laplacian: ;; = —A;j, {ii = X jen) Aij, L1 = 0.
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Details: Moving to the Laplacian

» D has a zero diagonal.
» tr (LD) is unaffected by diagonal of L.
» Constrain L1 = 0 giving

—tr (AD) = tr (LD)

/  /  Jdimred/tex/talke/menn tex


../../../dimred/tex/talks/meu.tex

Details: Moving to the Laplacian

» D has a zero diagonal.
» tr (LD) is unaffected by diagonal of L.
» Constrain L1 = 0 giving

—tr (AD) = tr (LD)
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Details: Moving to the Laplacian

» D has a zero diagonal.
» tr (LD) is unaffected by diagonal of L.
» Constrain L1 = 0 giving

—tr (AD) = tr (leiag (WT)T —2LYY" + diag (YY") 1TL)
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Details: Moving to the Laplacian

» D has a zero diagonal.
» tr (LD) is unaffected by diagonal of L.
» Constrain L1 = 0 giving

—tr (AD) = tr (M —2LYYT + Wﬁf)
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Details: Moving to the Laplacian

» D has a zero diagonal.
» tr (LD) is unaffected by diagonal of L.
» Constrain L1 = 0 giving

—tr (AD) = —2tr (LYYT).
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Gaussian Random Field

» The maximum entropy probability distribution is a
Gaussian random field

p

pov) =[]

1 -
i1 K[ @m)'

» Covariance matrix is

K=(L+yD™!

» Where L is the Laplacian matrix associated with the
neighborhood graph.

» Off diagonal elements of the Laplacian are Lagrange
multipliers from moment constraints.

» On diagonal elements given by negative sum of
off-diagonal (L1 = 0).
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Data Feature Independence

» The GREF specifying independence across data features.

» Most applications of Gaussian models are applied
independently across data points.

» Notable exceptions include Zhu et al. (2003); Lawrence (2004, 2005);
Kemp and Tenenbaum (2008).
» Maximum likelihood in this model is equivalent
maximizing entropy under distance constraints.

/  /  Jmeu/tex/talke/hlec<sina )


../../../meu/tex/talks/blessing

Blessing of Dimensionality

p
p(Y) = — exp
H IK|? (2)%
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Blessing of Dimensionality

r
1.
p(Y) = H neXp(—EyLK 1Y:,]')/

» Maximum likelihood is consistent: (see e.g. Wasserman, 2003, pg
126)
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Blessing of Dimensionality

» Maximum likelihood is consistent: (see e.g. Wasserman, 2003, pg
126)
» As we increase data points parameters become better
determined.
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Blessing of Dimensionality

» Maximum likelihood is consistent: (see e.g. Wasserman, 2003, pg
126)
» As we increase data points parameters become better
determined.
» Not in this model.
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Blessing of Dimensionality

p

=1

1
B P( Y Y )
1 K[> 2n)? 2

» Maximum likelihood is consistent: (see e.g. Wasserman, 2003, pg
126)
» As we increase data points parameters become better
determined.
» Not in this model.
» As we increase data features parameters become better
determined.
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Blessing of Dimensionality

» Maximum likelihood is consistent: (see e.g. Wasserman, 2003, pg
126)
» As we increase data points parameters become better
determined.
» Not in this model.
» As we increase data features parameters become better
determined.

» This turns the large p small n problem on its head.
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Blessing of Dimensionality

» Maximum likelihood is consistent: (see e.g. Wasserman, 2003, pg
126)
» As we increase data points parameters become better
determined.
» Not in this model.
» As we increase data features parameters become better
determined.

» This turns the large p small n problem on its head.

» There is a “Blessing of Dimensionality” in this model.
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Blessing of Dimensionality

» Maximum likelihood is consistent: (see e.g. Wasserman, 2003, pg
126)

» As we increase data points parameters become better
determined.

» Not in this model.

» As we increase data features parameters become better
determined.

» This turns the large p small n problem on its head.
» There is a “Blessing of Dimensionality” in this model.
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Inverse Covariance

» From the “covariance interpretation” we think of the
similarity matrix as a covariance matrix.

» Each element of the covariance is a function of two data
points.

» For LE, LLE and MVU the stiffness matrix is like an inverse
covariance.

» This is a conditional independence assumption.
» Describes how points are connected.
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Conditional Independence

» A covariance matrix specifies correlation between two
variables. If elements are zero those variables are truly
independent.

» In a marginal Gaussian those correlations don’t change.

» The inverse covariance (precision, or information matrix)
specifies conditional independencies.

» If elements are zero those variables are conditionally
independent.
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Relationship to Laplacian Eigenmaps

» Laplacian eigenmaps (Belkin and Niyogi, 2003): graph Laplacian
is specified across the data points.
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Relationship to Laplacian Eigenmaps

» Laplacian eigenmaps (Belkin and Niyogi, 2003): graph Laplacian
is specified across the data points.

» Laplacian has exactly the same form as our matrix L.
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Relationship to Laplacian Eigenmaps

» Laplacian eigenmaps (Belkin and Niyogi, 2003): graph Laplacian
is specified across the data points.

» Laplacian has exactly the same form as our matrix L.

» Parameters of the Laplacian are set either as constant or
according to the distance between two points.
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Relationship to Laplacian Eigenmaps

» Laplacian eigenmaps (Belkin and Niyogi, 2003): graph Laplacian
is specified across the data points.

» Laplacian has exactly the same form as our matrix L.

» Parameters of the Laplacian are set either as constant or
according to the distance between two points.

» Smallest eigenvectors of this Laplacian are then used for
visualizing the data.
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Smallest Eigenvalues of Laplacian

» Eigendecomposition of the covariance is

K = UAUT
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Smallest Eigenvalues of Laplacian

» Eigendecomposition of the covariance is

K = UAUT

» Eigendecomposition of the Laplacian is

L=U(A"—y1)U"
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Smallest Eigenvalues of Laplacian

» Eigendecomposition of the covariance is

K = UAUT

» Eigendecomposition of the Laplacian is

L=U(A"—y1)U"

» Principal eigenvalues of K are smallest eigenvalues of L.

> (smallest eigenvalue of L is zero, but this is removed by the
centering operation on K, or discarded in LE)
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Laplacian Figenmaps

» Set parameters of Laplacian.
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Laplacian Figenmaps

» Set parameters of Laplacian.
» Perform CMDS on the implied matrix K.
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Laplacian Figenmaps

» Set parameters of Laplacian.
» Perform CMDS on the implied matrix K.

1. No constraints are imposed in Laplacian eigenmaps so
distances will not be preserved.
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Laplacian Figenmaps

» Set parameters of Laplacian.
» Perform CMDS on the implied matrix K.

1. No constraints are imposed in Laplacian eigenmaps so
distances will not be preserved.

2. LE gains significant computational advantage by not
representing the covariance matrix explicitly.
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Laplacian Figenmaps

» Set parameters of Laplacian.
» Perform CMDS on the implied matrix K.
1. No constraints are imposed in Laplacian eigenmaps so
distances will not be preserved.
2. LE gains significant computational advantage by not
representing the covariance matrix explicitly.
3. No matrix inverses required, eigenvalue problem sparse.
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Locally Linear Embedding

» The Laplacian should be constrained positive definite.
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Locally Linear Embedding

» The Laplacian should be constrained positive definite.

» This constraint can be imposed by factorizing it as

L=MM"
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Locally Linear Embedding

» The Laplacian should be constrained positive definite.
» This constraint can be imposed by factorizing it as

L=MM"

» To ensure it is a Laplacian, we need to constrain M™1=0
giving L1 = 0.
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Locally Linear Embedding

» The Laplacian should be constrained positive definite.
» This constraint can be imposed by factorizing it as

L=MM"

» To ensure it is a Laplacian, we need to constrain M™1=0
giving L1 = 0.

> ie. mi,i = - Z]EN(Z) m]'/i
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Locally Linear Embedding

» The Laplacian should be constrained positive definite.
» This constraint can be imposed by factorizing it as

L=MM"

» To ensure it is a Laplacian, we need to constrain M'1 = 0
giving L1 = 0.
> le mi,i = - Z]EN(Z) m]'/i
» Setm;; = 0if j ¢ N (7).
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Locally Linear Embedding

» Locally linear embeddings (Roweis and Saul, 2000) are then a
specific case of MEU where
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Locally Linear Embedding

» Locally linear embeddings (Roweis and Saul, 2000) are then a
specific case of MEU where

1. The diagonal sums, m;;, are further constrained to unity.
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Locally Linear Embedding

» Locally linear embeddings (Roweis and Saul, 2000) are then a
specific case of MEU where

1. The diagonal sums, m;;, are further constrained to unity.
2. Model parameters found by maximizing pseudolikelihood of
the data.
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Point One

A

» For unit diagonals we have M =1 - W.
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Point One

» For unit diagonals we have M =1 - W.
» Here the off diagonal sparsity pattern of W matches M.
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Point One

» For unit diagonals we have M =1 - W.
» Here the off diagonal sparsity pattern of W matches M.

» Thus
I-W)1=0.
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Point One

v

For unit diagonals we have M =1 - W.

v

Thus

v

I-W)1=0.

v

LLE proscribes that the smallest eigenvectors of
I-W)I-W)'=MM' =L

(like Laplacian Eigenmaps).
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Point One

v

For unit diagonals we have M =1 - W.

v

Thus

v

I-W)1=0.

v

LLE proscribes that the smallest eigenvectors of
I-W)I-W)'=MM' =L

(like Laplacian Eigenmaps).
» Equivalent to CMDS on the GRF described by L.
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Second Point

» Pseudolikelihood approximation (see e.g. Koller and Friedman,
2009, pg 970): product of the conditional densities:

pV) ~ [ [ p(yi:Y0)s

i=1

Y\; represents data other than the ith point.
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Second Point

» Pseudolikelihood approximation (see e.g. Koller and Friedman,
2009, pg 970): product of the conditional densities:

pV) ~ [ [ p(yi:Y0)s

i=1

Y\; represents data other than the ith point.

» True likelihood is proportional to this but requires
renormalization.
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Second Point

» Pseudolikelihood approximation (see e.g. Koller and Friedman,
2009, pg 970): product of the conditional densities:

n
pV) ~ [ [ p(yi:Y0)s
i=1
Y\; represents data other than the ith point.

» True likelihood is proportional to this but requires
renormalization.

» In pseudolikelihood normalization is ignored.
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Conditionals

» Factors in the GRF are the conditionals,

2

m?.\2 m2, Wi
§ , )
p(Yi,:ly\i):(_z;lJ exp _—2” Yi: — 2 A
jeNG) ”
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Conditionals

» Factors in the GRF are the conditionals,

2 \2 2 Wi 2
i
p(Yi,:ly\i):(z_;_(lJ exp _% Yi: — Z Vi
jeNG |l

» Maximizing each conditional is equivalent to optimizing
LLE objective.
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Conditionals

» Factors in the GRF are the conditionals,
/4 2

m?.\2 m2, Wi
§ , )
p(Yi,:ly\i):(_z;lJ exp _—2” Yi: — 2 A
jeNG) ”

» Maximizing each conditional is equivalent to optimizing
LLE objective.

» Constraint that LLE weights sum to one arises naturally
because w]-,i/mi,i and mi; = ZjEN(i) w]-,i.
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Conditionals

» Factors in the GRF are the conditionals,
/4 2

m?.\2 m2, Wi
§ , )
p(Yi,:ly\i):(_z;lJ exp _—2” Yi: — 2 A
jeNG) ”

» Maximizing each conditional is equivalent to optimizing
LLE objective.

» Constraint that LLE weights sum to one arises naturally
because w]-,i/mi,i and mi; = ZjEN(i) w]-,i.
» In LLE a further constraint is imposed m;; = 1.
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LLE Approximates MEU

» LLE is an approximation to maximum likelihood.

-/ Jmen/tex/talke/1l1eRelation tex

24


../../../meu/tex/talks/lleRelation.tex

LLE Approximates MEU

» LLE is an approximation to maximum likelihood.
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» LLE is an approximation to maximum likelihood.

» Laplacian has factorized form.

» Pseudolikelihood also allows for relatively quick
parameter estimation.
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LLE Approximates MEU

» LLE is an approximation to maximum likelihood.
» Laplacian has factorized form.

» Pseudolikelihood also allows for relatively quick
parameter estimation.

» ignoring the partition function removes the need to invert
to recover the covariance matrix.
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LLE Approximates MEU

» LLE is an approximation to maximum likelihood.
» Laplacian has factorized form.

» Pseudolikelihood also allows for relatively quick
parameter estimation.

» ignoring the partition function removes the need to invert
to recover the covariance matrix.
» LLE can be applied to larger data sets than MEU or MV U.

Note: The sparsity pattern in the Laplacian for LLE will not
match that used in the Laplacian for the other algorithms due
to the factorized representation.
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LLE and PCA

» LLE is motivated by considering local linear embeddings
of the data.
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LLE and PCA

» LLE is motivated by considering local linear embeddings
of the data.

» Interestingly, as we increase the neighborhood size to
K =n -1 we do not recover PCA.
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» Interestingly, as we increase the neighborhood size to
K =n -1 we do not recover PCA.

» But PCA is the “optimal” linear embedding!!

-/ /  /meu/tex/talke/l1l1eRelation tex

25


../../../meu/tex/talks/lleRelation.tex

LLE and PCA

» LLE is motivated by considering local linear embeddings
of the data.

» Interestingly, as we increase the neighborhood size to
K =n -1 we do not recover PCA.

» But PCA is the “optimal” linear embedding!!

» LLE is optimizing a pseudolikelihood: in contrast the MEU
algorithm, which LLE approximates, does recover PCA
when K =n-1.
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Acyclic Locally Linear Embedding

» The pseudolikelihood is an approximation.
» Unless neighborhood in M is forced acyclic.

» Then M is a Cholesky factor and pseudolikelihood
approximation is exact.

» Normalizer of Gaussian model is

|MMT| %_ mizli g
2m “|2n

» This gives a very fast approach to fitting MEU.
» We call this acyclic LLE.

» It does include PCA as special case.
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Isomap and MEU

» Both MVU and MEU can be thought of as starting with a
sparse graph of (squared) distances.
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Isomap and MEU

» Both MVU and MEU can be thought of as starting with a
sparse graph of (squared) distances.

» Fill in other distances by maximizing the total
variance/entropy.
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Isomap and MEU

» Both MVU and MEU can be thought of as starting with a
sparse graph of (squared) distances.

» Fill in other distances by maximizing the total
variance/entropy.

» Interneighbor distances in this graph are preserved just
like in isomap.
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Isomap and MEU

» Both MVU and MEU can be thought of as starting with a
sparse graph of (squared) distances.

» Fill in other distances by maximizing the total
variance/entropy.

» Interneighbor distances in this graph are preserved just
like in isomap.

1. For isomap the implied covariance can have negative
eigenvalues (see Weinberger et al., 2004).
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Isomap and MEU

» Both MVU and MEU can be thought of as starting with a
sparse graph of (squared) distances.

» Fill in other distances by maximizing the total
variance/entropy.
» Interneighbor distances in this graph are preserved just
like in isomap.
1. For isomap the implied covariance can have negative
eigenvalues (see Weinberger et al., 2004).
2. Isomap is slower than LLE and LE: requires a dense
eigenvalue problem and a shortest path algorithm.
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Relationship to GP-LVM

» Gaussian Process latent variable models (Lawrence, 2005)
also define Gaussian densities independently over the
features.
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Relationship to GP-LVM

» Gaussian Process latent variable models (Lawrence, 2005)
also define Gaussian densities independently over the
features.

» GP-LVMs construct a Gaussian process by specifying a
covariance function (Mercer kernel) in X.

» A Gauss Markov random field can be specified by a
Gaussian process through appropriate covariance
functions

k(x, x") = exp(=[lx — x7ly)
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» Gaussian Process latent variable models (Lawrence, 2005)
also define Gaussian densities independently over the
features.

» GP-LVMs construct a Gaussian process by specifying a
covariance function (Mercer kernel) in X.

» A Gauss Markov random field can be specified by a
Gaussian process through appropriate covariance
functions

k(x, x") = exp(=[lx — x7ly)

» Inverse covariance will be sparse and based on
neighborhood.
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Relationship to GP-LVM

» Gaussian Process latent variable models (Lawrence, 2005)
also define Gaussian densities independently over the
features.

» GP-LVMs construct a Gaussian process by specifying a
covariance function (Mercer kernel) in X.

» A Gauss Markov random field can be specified by a
Gaussian process through appropriate covariance
functions

k(x, x") = exp(=[lx — x7ly)

» Inverse covariance will be sparse and based on
neighborhood.

» In the GP-LVM the neighborhood is learnt by optimization
of X.
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Simple Experiments

» Consider two real data sets.
» We apply each of the spectral methods we have reviewed.
» Apply the MEU framework.

» Follow the suggestion of Harmeling (Harmeling, 2007) and
use the GPLVM likelihood (Lawrence, 2005) for
embedding quality.

» The higher the likelihood the better the embedding.
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Motion Capture Data

» Data consists of a 3-dimensional point cloud of the location
of 34 points from a subject performing a run.

» 102 dimensional data set containing 55 frames of motion
capture.

» Subject begins the motion from stationary and takes
approximately three strides of run.

» Should see this structure in the visualization: a starting
position followed by a series of loops.

» Data was made available by Ohio State University.

» The two dominant eigenvectors are visualized in following
tigures.
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Laplacian Figenmaps and LLE
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(a) Laplacian Eigenmaps (b) Locally Linear Embedding

Figure: Models capture either the cyclic structure or the structure
associated with the start of the run or both parts.
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Isomap and MVU
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Figure: Models capture either the cyclic structure or the structure
associated with the start of the run or both parts.
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MEU and ALLE
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(a) MEU (b) ALLE

Figure: Models capture either the cyclic structure or the structure
associated with the start of the run or both parts.
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Motion Capture: Model Scores
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MVU
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0 2000 4000

Figure: Model score for the different spectral approaches.
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Robot Navigation Example

» Second data set: series of recordings from a robot as it
traces a square path in a building.
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Robot Navigation Example

» Second data set: series of recordings from a robot as it
traces a square path in a building.

» It records the strength of WiFi signals (see Ferris et al.,
2007, for an application).
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Robot Navigation Example

» Second data set: series of recordings from a robot as it
traces a square path in a building.

» It records the strength of WiFi signals (see Ferris et al.,
2007, for an application).

» Robot only in two dimensions, the inherent dimensionality
of the data should be two.
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Robot Navigation Example

» Second data set: series of recordings from a robot as it
traces a square path in a building.

» It records the strength of WiFi signals (see Ferris et al.,
2007, for an application).

» Robot only in two dimensions, the inherent dimensionality
of the data should be two.

» Robot completes a single circuit after entry: it is expected
to exhibit “loop closure”.
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Robot Navigation Example

» Second data set: series of recordings from a robot as it
traces a square path in a building.

» It records the strength of WiFi signals (see Ferris et al.,
2007, for an application).

» Robot only in two dimensions, the inherent dimensionality
of the data should be two.

» Robot completes a single circuit after entry: it is expected
to exhibit “loop closure”.

» Data consists of 215 frames of measurement of WiFi signal
strength of 30 access points.
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Laplacian Figenmaps and LLE
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(a) Laplacian Eigenmaps (b) Locally Linear Embedding

Figure: Models show loop closure but smooth the trace to different
degrees.
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Isomap and MVU
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Figure: Models show loop closure but smooth the trace to different
degrees.

/  / Jmeu/tex/talke/robot alle tex


../../../meu/tex/talks/robot_alle.tex

MEU and DRILL
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Figure: Models show loop closure but smooth the trace to different
degrees.
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Robot Navigation: Model Scores
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MEU -
MVU -
isomap

LE -

-6000 -1000 4000

Figure: Model score for the different spectral approaches.
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Discussion

» New perspective on dimensionality reduction algorithms
based around maximum entropy.

» Start with MVU and end with GRFs.

» Hope that this perspective on dimensionality reduction
will encourage new strands of research at the interface of
these areas.
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Stages of Spectral Dimensionality Reduction

» Our perspective shows there are three separate stages used
in existing spectral dimensionality algorithms.

1. A neighborhood between data points is selected. Normally
k-nearest neighbors or similar algorithms are used.

2. Interpoint distances between neighbors are fed to the
algorithms which provide a similarity matrix. The way the
entries in the similarity matrix are computed is the main
difference between the different algorithms.

3. The relationship between points in the similarity matrix is
visualized using the eigenvectors of the similarity matrix.
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Our Perspective

» Each step is somewhat orthogonal.

» Neighborhood relations need not come from nearest
neighbors: can use structure learning.

» Main difference between approaches is how similarity
matrix entries are determiend.

» Final step attempts to visualize the similarity using
eigenvectors. This is just one possible approach.

» There is an entire field of graph visualization proposing
different approaches to visualizing such graphs.
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Advantages of Existing Approaches

» Conflating the three steps allows faster complete
algorithms.

» E.g. mixing 2nd & 3rd allows speed ups by never
computing the similarity matrix.

» We still can understand the algorithm from the unifying
perspective while exploiting the computational
advantages offered by this neat shortcut.
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Other Points

» ALLE may provide a good compromise in speed vs
accuracy.

» Also looked at structural learning.
» See Lawrence (2012) for more details.
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Final Experiment: Structure Learning

» Test the ability of L1 regularization of the random field to
learn the neighborhood.

» Considered the motion capture data and used the DRILL
with a neighborhood size of 20 and full connectivity.

» L1 regularization on the parameters: vary regularization
size and seek a maximum under the GPLVM.

-/ /  /meu/tex/talke/neiahborhood

63


../../../meu/tex/talks/neighborhood

Structure Learning from Neighborhood of 20
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Figure: Model scores for different regularization coefficients.
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Structure Learning from Neighborhood of 20

Figure: Visualization associated with highest model score.
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Full Structure Learning
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Figure: Model scores for different regularization coefficients.
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Full Structure Learning
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Figure: Visualization associated with highest model score.
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Different Neighborhood Scores
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Figure: Model scores for different neighborhood sizes.
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Different Neighborhood Scores

Figure: Visualization associated with highest model score.
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Structure Learning from Neighborhood of 6
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Figure: Model scores for different regularization coefficients.
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Structure Learning from Neighborhood of 6

2

Figure: Visualization associated with highest model score.
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