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Notation

p data dimensionality
q latent dimensionality
n number of data points
Y design matrix containing our data n × p
X matrix of latent variables n × q
D matrix of interpoint squared distances n × n
K similarities/covariance/kernel n × n
L Laplacian matrix n × n

Row vector from matrix A given by ai,: column vector a:, j and
element given by ai, j.
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Distances and Similarities

I Typical scenario, a data set, Y stored in a matrix of
dimension n × p.

I Proximity data: a data set in form of distances, D, or
similarities K. These matrices are dimension n × n.

I Similarity matrices have large entries when data points are
close.

I Distance matrices have large entries when points are far
apart.
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Multidimensional Scaling

I Multidimensional scaling (MDS) algorithms are
dimensionality reduction for proximity matrices.

I We can move between similarity and squared distance as
follows di, j = ki,i − 2ki, j + k j, j.

I In MDS this is known as the standard transformation
(Mardia et al., 1979).

I If ki, j = k(yi,:,y j,:) is a “kernel” this is the “distance in feature
space” (Schölkopf and Smola, 2001).

I If ki, j is an element from a covariance matrix K, it is the
expected squared distance between two samples with that
covariance.
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Note: Centering and Squared Distances

I Consider matrix form of squared distance,

D = diag
(
YY>

)
1> − 2YY> + 1diag

(
YY>

)>
.

I A Centering matrix has the form

H = I − n−111> : H1 = 0

I This implies:

−
1
2

HDH = HYY>H = ŶŶ>.

I i.e. centered square distance matrix is closely related to
centred similarity/kernel.
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Spectral Dimensionality Reduction in Machine
Learning

I Spectral approach to dimensionality reduction.
1. Convert data to a matrix of dimension n × n.
2. Visualize data with eigenvectors of matrix.

I Examples:
I isomap (Tenenbaum et al., 2000),
I locally linear embeddings (LLE, Roweis and Saul, 2000),
I Laplacian eigenmaps (LE, Belkin and Niyogi, 2003) and
I maximum variance unfolding (MVU, Weinberger et al., 2004).
I Also kernel PCA (Schölkopf et al., 1998; Ham et al., 2004).
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Classical Multidimensional Scaling Perspective

I Classical multidimensional scaling (CMDS)
1. Compute an n × n squared distance matrix, D.
2. Form the centered “similarity matrix” HKH = − 1

2 HDH.
3. Visualize through q principal eigenvectors (as latent matrix

X).

I This algorithm matches squared distances computed in X
to those computed in Y through an L1 error.

I Our Argument:
I Main innovation in ML work: how to compute the squared

distance matrix D.
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Unifying Perspective

I Introduce probabilistic approach to constructing squared
distance matrices.

I Relate isomap, LLE, LE and MVU to the approach.
I Wrap spectral methods in a unifying perspective of

Gaussian random fields and CMDS.

../../../meu/tex/talks/spectralIntro.tex 10

../../../meu/tex/talks/spectralIntro.tex


Maximum Variance Unfolding

Learn a “Kernel” for Dimensionality Reduction

I In maximum variance unfolding (MVU Weinberger et al., 2004):
learn a “kernel matrix” that will allow for dimensionality
reduction.

I Preserve only local proximity relationships in the data.
I Take a set of neighbors.
I Construct a kernel matrix where only distances between

neighbors match data distances.
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Maximum Variance Unfolding

I Optimize elements of K by maximizing1 tr (K).

d1,5

d1,4

d1,2

d1,3

5

1

2

3
4

I Subject to squared distance constraints between neighbors

di, j = ki,i − 2ki, j + k j, j
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Maximum Entropy Unfolding

New Contribution

I Maximize entropy instead of variance (Jaynes, 1986): MEU
(Lawrence, 2011, 2010).

I Entropy and variance are closely related.
I Maximum entropy leads to a probabilistic model.
I Each spectral approach approximates MEU in some way.
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Maximum Entropy Unfolding

I Find distribution with maximum entropy subject to
constraints on moments.
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d1,4

d1,2
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I MEU constraints are on expected distances between
neighbors.

di, j =
〈
y>i,:yi,:

〉
− 2

〈
y>i,:y j,:

〉
+

〈
y>j,:y j,:

〉
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Maximum Entropy

I Maximum entropy distribution.

p(Y) ∝ exp
(
−

1
2

tr
(
γYY>

))
exp

−1
2

∑
i

∑
j∈N(i)

λi, jdi, j


N (i) is neighborhood, {λi, j}, Lagrange multipliers.
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Maximum Entropy

I Maximum entropy distribution.

p(Y) ∝ exp
(
−

1
2

tr
(
γYY>

)
−

1
4

tr (ΛD)
)

N (i) is neighborhood, {λi, j}, Lagrange multipliers.
Lagrange multipliers in sparse matrix Λ.
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Maximum Entropy

I Maximum entropy distribution.

p(Y) =

∣∣∣L + γI
∣∣∣ 1

2

(2π)
np
2

exp
(
−

1
2

tr
(
(L + γI)YY>

))
N (i) is neighborhood, {λi, j}, Lagrange multipliers.
Introduce Laplacian: `i, j = −λi, j, `i,i =

∑
j∈N(i) λi, j, L1 = 0.
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Details: Moving to the Laplacian

I D has a zero diagonal.
I tr (LD) is unaffected by diagonal of L.
I Constrain L1 = 0 giving

−tr (ΛD) = tr (LD)
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Details: Moving to the Laplacian

I D has a zero diagonal.
I tr (LD) is unaffected by diagonal of L.
I Constrain L1 = 0 giving

−tr (ΛD) = tr
(
L1diag

(
YY>

)>
− 2LYY> + diag

(
YY>

)
1>L

)
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Details: Moving to the Laplacian

I D has a zero diagonal.
I tr (LD) is unaffected by diagonal of L.
I Constrain L1 = 0 giving

−tr (ΛD) = −2tr
(
LYY>

)
.
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Gaussian Random Field

I The maximum entropy probability distribution is a
Gaussian random field

p(Y) =

p∏
j=1

1

|K|
1
2 (2π)

n
2

exp
(
−

1
2

y>:, jK
−1y:, j

)
,

I Covariance matrix is

K = (L + γI)−1

.
I Where L is the Laplacian matrix associated with the

neighborhood graph.
I Off diagonal elements of the Laplacian are Lagrange

multipliers from moment constraints.
I On diagonal elements given by negative sum of

off-diagonal (L1 = 0).
../../../dimred/tex/talks/meu.tex 19

../../../dimred/tex/talks/meu.tex


Data Feature Independence

I The GRF specifying independence across data features.
I Most applications of Gaussian models are applied

independently across data points.
I Notable exceptions include Zhu et al. (2003); Lawrence (2004, 2005);

Kemp and Tenenbaum (2008).

I Maximum likelihood in this model is equivalent
maximizing entropy under distance constraints.
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Blessing of Dimensionality

p(Y) =

p∏
j=1

1

|K|
1
2 (2π)

n
2

exp
(
−

1
2

y>:, jK
−1y:, j

)
,

I Maximum likelihood is consistent: (see e.g. Wasserman, 2003, pg
126)

I As we increase data points parameters become better
determined.

I Not in this model.
I As we increase data features parameters become better

determined.

I This turns the large p small n problem on its head.
I There is a “Blessing of Dimensionality” in this model.
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Blessing of Dimensionality

p(Y) =

n∏
i=1

1

|C|
1
2 (2π)

p
2

exp
(
−

1
2

y>i,:C
−1yi,:

)
,
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Inverse Covariance

I From the “covariance interpretation” we think of the
similarity matrix as a covariance matrix.

I Each element of the covariance is a function of two data
points.

I For LE, LLE and MVU the stiffness matrix is like an inverse
covariance.

I This is a conditional independence assumption.
I Describes how points are connected.
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Conditional Independence

I A covariance matrix specifies correlation between two
variables. If elements are zero those variables are truly
independent.

I In a marginal Gaussian those correlations don’t change.
I The inverse covariance (precision, or information matrix)

specifies conditional independencies.
I If elements are zero those variables are conditionally

independent.
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Relationship to Laplacian Eigenmaps

I Laplacian eigenmaps (Belkin and Niyogi, 2003): graph Laplacian
is specified across the data points.

I Laplacian has exactly the same form as our matrix L.
I Parameters of the Laplacian are set either as constant or

according to the distance between two points.
I Smallest eigenvectors of this Laplacian are then used for

visualizing the data.
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Smallest Eigenvalues of Laplacian

I Eigendecomposition of the covariance is

K = UΛU>

I Eigendecomposition of the Laplacian is

L = U
(
Λ−1
− γI

)
U>

I Principal eigenvalues of K are smallest eigenvalues of L.
I (smallest eigenvalue of L is zero, but this is removed by the

centering operation on K, or discarded in LE)
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Laplacian Eigenmaps

I Set parameters of Laplacian.

I Perform CMDS on the implied matrix K.
1. No constraints are imposed in Laplacian eigenmaps so

distances will not be preserved.
2. LE gains significant computational advantage by not

representing the covariance matrix explicitly.
3. No matrix inverses required, eigenvalue problem sparse.
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Locally Linear Embedding

I The Laplacian should be constrained positive definite.

I This constraint can be imposed by factorizing it as

L = MM>

I To ensure it is a Laplacian, we need to constrain M>1 = 0
giving L1 = 0.

I i.e. mi,i = −
∑

j∈N(i) m j,i
I Set m j,i = 0 if j < N (i).
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Locally Linear Embedding

I Locally linear embeddings (Roweis and Saul, 2000) are then a
specific case of MEU where

1. The diagonal sums, mi,i, are further constrained to unity.
2. Model parameters found by maximizing pseudolikelihood of

the data.
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Point One

I For unit diagonals we have M = I −W.

I Here the off diagonal sparsity pattern of W matches M.
I Thus

(I −W)>1 = 0.

I LLE proscribes that the smallest eigenvectors of

(I −W)(I −W)> = MM> = L

(like Laplacian Eigenmaps).
I Equivalent to CMDS on the GRF described by L.
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Second Point

I Pseudolikelihood approximation (see e.g. Koller and Friedman,

2009, pg 970): product of the conditional densities:

p(Y) ≈
n∏

i=1

p(yi,:|Y\i),

Y\i represents data other than the ith point.

I True likelihood is proportional to this but requires
renormalization.

I In pseudolikelihood normalization is ignored.
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Conditionals

I Factors in the GRF are the conditionals,

p(yi,:|Y\i) =

m2
i,i

2π


p
2

exp

−m2
i,i

2

∥∥∥∥∥∥∥∥yi,: −
∑

j∈N(i)

w j,i

mi,i
y j,:

∥∥∥∥∥∥∥∥
2

2

 .

I Maximizing each conditional is equivalent to optimizing
LLE objective.

I Constraint that LLE weights sum to one arises naturally
because w j,i/mi,i and mi,i =

∑
j∈N(i) w j,i.

I In LLE a further constraint is imposed mi,i = 1.
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LLE Approximates MEU

I LLE is an approximation to maximum likelihood.

I Laplacian has factorized form.
I Pseudolikelihood also allows for relatively quick

parameter estimation.
I ignoring the partition function removes the need to invert

to recover the covariance matrix.
I LLE can be applied to larger data sets than MEU or MVU.

Note: The sparsity pattern in the Laplacian for LLE will not
match that used in the Laplacian for the other algorithms due
to the factorized representation.
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LLE and PCA

I LLE is motivated by considering local linear embeddings
of the data.

I Interestingly, as we increase the neighborhood size to
K = n − 1 we do not recover PCA.

I But PCA is the “optimal” linear embedding!!
I LLE is optimizing a pseudolikelihood: in contrast the MEU

algorithm, which LLE approximates, does recover PCA
when K = n − 1.
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Acyclic Locally Linear Embedding

I The pseudolikelihood is an approximation.
I Unless neighborhood in M is forced acyclic.
I Then M is a Cholesky factor and pseudolikelihood

approximation is exact.
I Normalizer of Gaussian model is

∣∣∣MM>
∣∣∣

2π


p
2

=

m2
i,i

2π


p
2

I This gives a very fast approach to fitting MEU.
I We call this acyclic LLE.
I It does include PCA as special case.
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Isomap and MEU

I Both MVU and MEU can be thought of as starting with a
sparse graph of (squared) distances.

I Fill in other distances by maximizing the total
variance/entropy.

I Interneighbor distances in this graph are preserved just
like in isomap.

1. For isomap the implied covariance can have negative
eigenvalues (see Weinberger et al., 2004).

2. Isomap is slower than LLE and LE: requires a dense
eigenvalue problem and a shortest path algorithm.
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Relationship to GP-LVM

I Gaussian Process latent variable models (Lawrence, 2005)
also define Gaussian densities independently over the
features.

I GP-LVMs construct a Gaussian process by specifying a
covariance function (Mercer kernel) in X.

I A Gauss Markov random field can be specified by a
Gaussian process through appropriate covariance
functions

k(x, x′) = exp(− ‖x − x′‖1)

I Inverse covariance will be sparse and based on
neighborhood.

I In the GP-LVM the neighborhood is learnt by optimization
of X.
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Simple Experiments

I Consider two real data sets.
I We apply each of the spectral methods we have reviewed.
I Apply the MEU framework.
I Follow the suggestion of Harmeling (Harmeling, 2007) and

use the GPLVM likelihood (Lawrence, 2005) for
embedding quality.

I The higher the likelihood the better the embedding.
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Motion Capture Data

I Data consists of a 3-dimensional point cloud of the location
of 34 points from a subject performing a run.

I 102 dimensional data set containing 55 frames of motion
capture.

I Subject begins the motion from stationary and takes
approximately three strides of run.

I Should see this structure in the visualization: a starting
position followed by a series of loops.

I Data was made available by Ohio State University.
I The two dominant eigenvectors are visualized in following

figures.
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Laplacian Eigenmaps and LLE
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(a) Laplacian Eigenmaps
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(b) Locally Linear Embedding

Figure: Models capture either the cyclic structure or the structure
associated with the start of the run or both parts.
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Isomap and MVU
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Figure: Models capture either the cyclic structure or the structure
associated with the start of the run or both parts.
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MEU and ALLE
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Figure: Models capture either the cyclic structure or the structure
associated with the start of the run or both parts.
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Motion Capture: Model Scores
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Figure: Model score for the different spectral approaches.
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Robot Navigation Example

I Second data set: series of recordings from a robot as it
traces a square path in a building.

I It records the strength of WiFi signals (see Ferris et al.,
2007, for an application).

I Robot only in two dimensions, the inherent dimensionality
of the data should be two.

I Robot completes a single circuit after entry: it is expected
to exhibit “loop closure”.

I Data consists of 215 frames of measurement of WiFi signal
strength of 30 access points.
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Laplacian Eigenmaps and LLE
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(a) Laplacian Eigenmaps
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(b) Locally Linear Embedding

Figure: Models show loop closure but smooth the trace to different
degrees.
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Isomap and MVU
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Figure: Models show loop closure but smooth the trace to different
degrees.
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MEU and DRILL
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(a) MEU
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(b) ALLE

Figure: Models show loop closure but smooth the trace to different
degrees.
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Robot Navigation: Model Scores
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Figure: Model score for the different spectral approaches.
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Discussion

I New perspective on dimensionality reduction algorithms
based around maximum entropy.

I Start with MVU and end with GRFs.
I Hope that this perspective on dimensionality reduction

will encourage new strands of research at the interface of
these areas.
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Stages of Spectral Dimensionality Reduction

I Our perspective shows there are three separate stages used
in existing spectral dimensionality algorithms.

1. A neighborhood between data points is selected. Normally
k-nearest neighbors or similar algorithms are used.

2. Interpoint distances between neighbors are fed to the
algorithms which provide a similarity matrix. The way the
entries in the similarity matrix are computed is the main
difference between the different algorithms.

3. The relationship between points in the similarity matrix is
visualized using the eigenvectors of the similarity matrix.
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Our Perspective

I Each step is somewhat orthogonal.
I Neighborhood relations need not come from nearest

neighbors: can use structure learning.
I Main difference between approaches is how similarity

matrix entries are determiend.
I Final step attempts to visualize the similarity using

eigenvectors. This is just one possible approach.
I There is an entire field of graph visualization proposing

different approaches to visualizing such graphs.

../../../meu/tex/talks/discussion_alle.tex 56

../../../meu/tex/talks/discussion_alle.tex


Advantages of Existing Approaches

I Conflating the three steps allows faster complete
algorithms.

I E.g. mixing 2nd & 3rd allows speed ups by never
computing the similarity matrix.

I We still can understand the algorithm from the unifying
perspective while exploiting the computational
advantages offered by this neat shortcut.
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Other Points

I ALLE may provide a good compromise in speed vs
accuracy.

I Also looked at structural learning.
I See Lawrence (2012) for more details.
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Outline

Learning the Neighborhood



Final Experiment: Structure Learning

I Test the ability of L1 regularization of the random field to
learn the neighborhood.

I Considered the motion capture data and used the DRILL
with a neighborhood size of 20 and full connectivity.

I L1 regularization on the parameters: vary regularization
size and seek a maximum under the GPLVM.
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Structure Learning from Neighborhood of 20
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Figure: Model scores for different regularization coefficients.

../../../meu/tex/talks/neighborhood 64

../../../meu/tex/talks/neighborhood


Structure Learning from Neighborhood of 20
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Figure: Visualization associated with highest model score.
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Full Structure Learning
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Figure: Model scores for different regularization coefficients.
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Full Structure Learning
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Figure: Visualization associated with highest model score.
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Different Neighborhood Scores
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Figure: Model scores for different neighborhood sizes.
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Different Neighborhood Scores

-1

0

1

2

-2 -1 0 1

Figure: Visualization associated with highest model score.
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Structure Learning from Neighborhood of 6
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Figure: Model scores for different regularization coefficients.
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Structure Learning from Neighborhood of 6
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Figure: Visualization associated with highest model score.

../../../meu/tex/talks/neighborhood 71

../../../meu/tex/talks/neighborhood

	Review
	Spectral Dimensionality Reduction
	MVU and MEU
	Maximum Likelihood and Blessing of Dimensionality

	Relation to Laplacian Eigenmaps
	Relation to Locally Linear Embedding
	Relation to Isomap
	Relation to GP-LVM
	Experiments
	Motion Capture Data
	Robot Navigation Example

	Discussion and Conclusions
	Appendix
	Learning the Neighborhood


