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Nonlinear Response Models

Consider the model of transcription,

—dxéit) = B+ Sjg (£ (1)) — Dixi (1),

where g (+) is a non-linear function. The differential equation can
still be solved,

B; t ey
(0= 2 +5 [ O g (f () du
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Motivation: p53



Radiation Damage in the Cell

» Radiation can damages molecules including DNA.

» Most DNA damage is quickly repaired—single strand breaks,
backbone break.

» Double strand breaks are more serious—a complete disconnect
along the chromosome.

» Cell cycle stages:

» Gi: Cell is not dividing.
» Gy Cell is preparing for meitosis, chromosomes have divided.
» S: Cell is undergoing meitosis (DNA synthesis).

» Main problem is in G1. In G2 there are two copies of the
chromosome. In G1 only one copy.



p53 “Guardian of the Cell”

Responsible for Repairing DNA damage
Activates DNA Repair proteins
Pauses the Cell Cycle (prevents replication of damage DNA)

vV v v Yy

Initiates apoptosis (cell death) in the case where damage can't
be repaired.

v

Large scale feeback loop with NF-xB.



‘©
o
)

o
o
80
T
S
®

()

<

=

Figure: p53. Left unbound, Right bound to DNA. Images by David S.

Goodsell from http://www.rcsb.org/ (see the'Molecule of the Month”

feature).


http://www.rcsb.org/

Figure: Repair of DNA damage by p53. Image from Goodsell (1999).



Some p53 Targets

DDB2 DNA Damage Specific DNA Binding Protein 2. (also
governed by C/ EBP-beta, E2F1, E2F3,...).

p21 Cycline-dependent kinase inhibitor 1A (CDKN1A). A
regulator of cell cycle progression. (also goverened by
SREBP-1a, Spl, Sp3,... ).
hPA26/SESN1 sestrin 1 Cell Cycle arrest.
BIK BCL2-interacting killer. Induces cell death
(apoptosis)
TNFRSF10b tumor necrosis factor receptor superfamily, member
10b. A transducer of apoptosis signals.



Modelling Assumption

» Assume pb3 affects targets as a single input module network
motif (SIM).

Figure: p53 SIM network motif as modelled by Barenco et al. 2006.



Mathematical Model

» Differential equation model of system.

dx; (t)
— =B+ (0) = Dix()
rate of mRNA transcription, baseline transcription rate,
transcription factor activity, mRNA decay



Mathematical Model

» Differential equation model of system.

dx; (t)
dt

= Bj + 5;g(f (t)) — Djx; (t)

rate of mRNA transcription, baseline transcription rate,
transcription factor activity, mRNA decay

» () is a nonlinear response to TF activity.



Respose to p53 ...
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Figure: Results from Barenco et al. (2006). Activity profile of p53 was
measured by Western blot to determine the levels of ser-15
phosphorylated p53 (serl5P-p53).



Michaelis-Menten Kinetics

Pei Gao

» The Michaelis-Menten activation model uses the following
non-linearity

. ef(8)
. )= —
5=
where we are using a GP f (t) to model the log of the TF
activity.
) Inferred p53 protein N Inferred p53 protein
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(a) Linear Response (b) Laplace Approximation

Nonlinear



Valdiation of Laplace Approximation

Michalis Titsias

©o 2 4 6 8 10 12
Figure: Laplace approximation error bars along with samples from the
true posterior distribution.



Covariance for Transcription Model

RBF covariance function for f (t)

():EI‘FSGXP( Dt)/ 1) exp (Dju) du.
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Covariance for Transcription Model

RBF covariance function for f (t)
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Covariance for Transcription Model

RBF covariance function for f (t)

xi (t) = % +S; exp(—D,-t)/Otg(f(u))exp(D,-u) du.

» Joint distribution
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Covariance for Transcription Model

RBF covariance function for f (t)
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MAP-Laplace Approximation



MAP-Laplace Approximation

Laplace’s method: approximate posterior mode as Gaussian

p(F|x) = N(f,A—l) o exp <—% (f—f)TA<f—f))

where f = argmaxp(f | x) and A = —VVlogp (f | y) l¢_¢ is the
Hessian of the negative posterior at that point. To obtain fand A,

we define the following function 9 (f) as:

log p(fx) oc ¥(F) = log p(x | f) + log p (f)



MAP-Laplace Approximation

Assigning a GP prior distribution to f(t), it then follows that
1 1 n
logp(f) = —=f K™ — - log|K| — - log2
ogp(f)=—3 5 log [K| — 7 log 2m

where K is the covariance matrix of f(t). Hence,

Vi (f) = V log p(x|f) — K71f
VVi(f) = VV log p(x|f) — K™t = -W — K™!



Estimation of (f)

Newton's method is applied to find the maximum of (f) as

£ = f — (VYo ()1 V(f)
= (W + K1)~ (WF — Vlog p(x|f))
In addition, A = —VV(#) = W + K~ where W is the negative

Hessian matrix. Hence, the Laplace approximation to the posterior
is a Gaussian with mean f and covariance matrix A~la

p(f %) = N(F,A™Y) = N(f, (W +K)™)



Model Parameter Estimation

The marginal likelihood is useful for estimating the model
parameters 6 and covariance parameters /

p(xi6,6) = [ p(xIf.0)p(fl0) of = [ exp (v ()
Using Taylor expansion of (f),
2 L1 1
log p(x|0, @) = log p (x|f,0,¢) - Ef K™ f — 3 log [I + KW]|
The parameters n = {6, ¢} can be then estimated by using

Ologp (xln) _ dlogp(xin) | 0log p (x|n) OF
on = on explicit of on




Repression



SOS Response

» DNA damage in bacteria may occur as a result of activity of
antibiotics.

» LexA is bound to the genome preventing transcription of the
SOS genes.

» RecA protein is stimulated by single stranded DNA,
inactivates the LexA repessor.

» This allows several of the LexA targets to transcribe.

» The SOS pathway may be essential in antibiotic resistance
Cirz et al. (2005).

» Aim is to target these proteins to produce drugs to increase
efficacy of antibiotics Lee et al. (2005).



LexA Experimental Description

» Data from Courcelle et al. (2001)

» UV irradiation of E. coli. in both wild-type cells and lexAl
mutants, which are unable to induce genes under LexA
control.

» Response measured with two color hybridization to cDNA
arrays.



Khanin et al. Model

Given measurements of gene expression at N time points
(to, t1,...,tny—1), the temporal profile of a gene 7, x; (t), that
solves the ODE in Eq. 1 can be approximated by

B; + f .
x; (t) = xPe Dt 1 D + S;e_D't/O g(f (u))ePdu.

i B' - i 1 - F. F.
Xi (t) = lee_D't + EI + S;e Dig_ = Z g(ﬁ) (eD,tJ+1 _ eD’tJ)
i 2RSS e

- fle:)+F(t: .
where f; = M on each subinterval
(tj,ti+1),j=0,...,N—2. This is under the simplifying
assumption that f (t) is a piece-wise constant function on each
subinterval (tj, tj + 1). Repression model: g(f(t)) = ﬁ



Khanin et al. Results
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Figure: Fig. 2 from Khanin et al. (2006): Reconstructed activity level of
master repressor LexA, following a UV dose of 40 J/m2.



Khanin et al. Results
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Figure: Fig. 3 from Khanin et al. (2006): Reconstructed profiles for four
genes in the LexA SIM.



Repression Model

Pei Gao

» We can use the same model of repression,

1

g (f(t) = 5+ ef®

In the case of repression we have to include the transient term,

B; t
5 (0) = e+ Z e s [P g(f (w)au
J



Results for the repressor LexA

Pei Gao

Inferred LexA Activity recN mRNA dinl MRNA
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Figure: Our results using an MLP kernel. From Gao et al. (2008).



MCMC for Non Linear Response



Use Samples to Represent Posterior

Michalis Titsias

» Sample in Gaussian processes

p (f[x) o< p (x|f) p ()

» Likelihood relates GP to data through
pt, B ‘ —D;(t—u)
xj(6) = aje Pt 4 2t [ e P Dg(f (u))du
J 0

» We use control points for fast sampling.



MCMC for Non Linear Response

The Metropolis-Hastings algorithm
» Initialize £(©)

» Form a Markov chain. Use a proposal distribution
Q(F(H1)|£(t)) and accept with the M-H step

p(x|f(t+1))p(f(t+1)) Q(f(t)|f(t+1))
min | 1
p(x|F®)p(F(B)  Q(F(t+1)|f(1))

» f can be very high dimensional (hundreds of points)
» How do we choose the proposal Q(f(t+1)|f(t))?

» Can we use the GP prior p(f) as the proposal?



p53 System Again

» One transcription factor (p53) that acts as an activator. We
consider the Michaelis-Menten kinetic equation

by(t) o o on(f(1))

dt 7 Texp(f(t)) + — D)

» We have 5 genes
» Gene expressions are available for T = 7 times and there are 3
replicas of the time series data
» TF (f) is discretized using 121 points
» MCMC details:
» 7 control points are used (placed in a equally spaced grid)
» Running time 4/5 hours for 2 million sampling iterations plus

burn in
» Acceptance rate for f after burn in was between 15% — 25%



Data used by Barenco et al. (2006): Predicted gene

expressions for the 1st replica

DDB2 Gene - first Replica

BIK Gene - first Replica

TNFRSF10b Gene - first Replica

) 2 4 6 8 0 12

Clp1/p21 Gene - first Replica
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Data used by Barenco et al. (2006): Protein concentrations

Inferred p53 protein Inferred ps3 protein Inferred ps3 protein

2 4 6 8 10 12

Linear model (Barenco et al. predictions are shown as crosses)

Inferred protein Inferred protein Inferred protein
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Nonlinear (Michaelis-Menten kinetic equation)



p53 Data Kinetic parameters

Basal rates Decay rates

s 4
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N 4
Bk ooz 526 sesni TNFRSFL05 Ciptip21 Bk

b2esesni | TNFRSFioh | Cipupal

Sensitivities Gamma parameters

wﬂmL%ﬁﬁm

Our results (grey) compared with Barenco et al. (2006) (black).
Note that Barenco et al. use a linear model




Results on SOS System

» Again consider the Michaelis-Menten kinetic equation
dx;(t) 1
2 = B: —  — D:x:(t
it I ey, 20

We have 14 genes (5 kinetic parameters each)
Gene expressions are available for T = 6 time slots
TF (f) is discretized using 121 points

MCMC details:

» 6 control points are used (placed in a equally spaced grid)

» Running time was 5 hours for 2 million sampling iterations plus
burn in

» Acceptance rate for f after burn in was between 15% — 25%

vV v v Yy



Results in E.coli data: Predicted gene expressions

dinF Gene dinl Gene lexA Gene

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
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Results in E.coli data: Predicted gene expressions
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Results in E.coli data: Predicted gene expressions

yebG Gene yjiw Gene




Results in E.coli data: Protein concentration

Inferred protein




Results in E.coli data: Kinetic parameters
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Results in E.co

[i data: Genes with low

sensitivity value
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Results in E.coli data: Confidence intervals for the kinetic

parameters
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Multiple TF Models



Multiple TFs

» We can generalize the Gaussian process sampling framework
to estimate from gene expression data multiple and possibly
interacting TFs.

» For linear response, this is tractable, but for nonlinear
response (in general) we use sampling.



Learning multiple TFs

» General form of the multiple TF model

dx;(t)
dt

= Bi + Sjg(f(t), ..., fi(t);w;) — Dixi(t), (1)

where the /-dimensional vector w; stores the interaction
weights between the jth gene and the / TFs. There may be
also some bias weight wp; for each gene.



Sigmoid model

» Choose the joint activation function g(u) to be the sigmoid
(Mjolsness et al., 1991)

I
hj =Y wifi(t) + wjo,
i=1

1

g(hj) = T+ ep(—h)’

» For single TF the above activation function gives rise to
Michaelis-Menten when we fix w; = 1.

» For the repressor case we set w; = —1, which however doesn’t
give rise to the exact Michaelis-Menten repressor equation



Bayesian model

» Likelihood:

N T
T I pCxieldfi(t < p < P)Y_1, {A;, B, Dy, Sj} Wi, 07),
j=1t=1

(2)
where these terms are Gaussians and aj? is gene-specific
variance

» Prior
» Kinetics {A;, Bj, D;j, S;} are positive and are represented in the
log space: Gaussian priors are used
» {f}._, are the log of the TFs: GP rbf priors with separate
timescales
» {w;} take real values: Gaussian priors are used

> Noise variances and GP lengthscales {o7,(7}: Gamma priors



MCMC

Component-wise M-H algorithm. lteratively sample from
conditional posteriors:

1.

o kL

Fori=1,...,1 sample f; from the conditional posterior based
on the approach of Titsias et. al [2009]

For j =1,..., N sample the kinetic parameters {A;, B;, D;, 5;}

For j=1,..., N sample the interaction weights w;
For j =1,..., N sample the gene-specific noise variance UJ?.
For i =1,...,I sample the lengthscale f,? of the rbf kernel

function.



Side Information

Learning the real TFs that produced the gene expression is not
easy because of identifiability problems in parameter space and
limited amount of data. Side information obtained from ChiP data
can be useful.

» Side information involves the weights W that represent the
interactions between genes and TFs. W is N x | matrix where
N the number of genes and / the number of TFs.

» Side information can be expressed as a binary N x | matrix X.
When x;; = 0, there is no interaction between the j gene and
the / TF, thus wj; = 0. When x;; = 1, the value wj; can take a
positive or negative value which must be inferred by MCMC.

» This scheme can be generalized to probabilistically expressed
side information where each x;; is drawn from some probability
mji that expresses our prior belief that the j gene has been
regulated by the i TF.



Artificial data

» We consider a toy example with two TFs, that can regulate 20
genes.

» We assume that we have deterministic side information for 8
out of 20 genes. i.e. we know which weights wj; and wj, are
zero for these 8 genes, say j =1,...,8.

» We also assume that the initial conditions in the differential
equations are all zero and also that we know the initial (at
t = 0) activation of the TFs. The number of non-zero
elements in the 20 x 2 matrix W is 25.



Artificial data

L L L L L L L L
1 2 3 4 5 6 7 8 9 10

Figure: The inferred profiles of the two TFs (in the log space). With red
solid lines are the ground-truth TFs used to generate the toy data. With
blue lines shaded error bars are the inferred TF profiles.



Artificial data

Figure: The predicted gene expressions. Red crosses represent the actual
gene expression and the blue line with shaded error bars are the
prediction found by MCMC.



Artificial data

Figure: The predicted gene expressions. Red crosses represent the actual
gene expression and the blue line with shaded error bars are the
prediction found by MCMC.



Artificial data
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Figure: The inferred basal rates for the 20 genes.



Artificial data

Sensitivities
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Figure: The inferred sensitivities for the 20 genes.
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Artificial data

Decay
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Figure: The inferred decays for the 20 genes.



Artificial data
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Figure: The inferred interaction weights W. (left) show the interaction
weights between the first TF and the 20 genes. (right) show the
corresponding weights for the second TF.



Spelman et. al. yeast data

We selected 30 genes regulated by 3 TFs. The 3 TFs are MBP1,
FKH2 and STE12. The selection was done based on the ChiP data

avalaible so that only the genes that are regulated exclusively by at
least one of these 3 TFs were selected.



Yeast data

Figure: The predicted gene expressions. Red crosses represent the actual
gene expression and the blue line with shaded error bars are the
prediction found by MCMC.



Yeast data

Figure: The predicted gene expressions. Red crosses represent the actual
gene expression and the blue line with shaded error bars are the
prediction found by MCMC.



Yeast data

Figure: TF profiles



Sigmoid model

>

The sigmoid model is perhaps less biologically plausible.
Particularly it assumes that all TFs (activators and repressors)
are combined by multiplication

1
1+ [Tp=a[exp(f(2))] ™" exp(—wjo)
recall that exp(f,(t)) is the TF.

sigmoid =

» This does not look so intuitive.

» Can we define activation functions where the combination is

done by addition?
Saturation and the ability of repressors to turn off the gene
expression must be incorporated.

Next we discuss such a model which can be viewed as a
generalization of the Michaelis-Menten model for the single
TF case.



Michaelis-Menten multiple TF model

dx;(t)
dt

= Bj+ Sig(A(t).. ... fi(thw)) — Dyxi(e).  (3)

> Let P ={1,...,P} be the set of all TFs

> A; be the set of TFs that are activators for jth gene and R;
the set of repressors.

» A;UR; CP. That is some of the TFs may not regulate the
jth gene

» The activation function takes the form
g 2ier Wi T 2ica, Wip p(fi(t))
1+ icr, wi exp(fi(t)) + Xica, wii exp(fi(t))

where wj; are now non-negative and can be thought as relative
sensitivities




Michaelis-Menten multiple TF model

D ier; Wi T 2ica, Wi exp(fi(t))
1+ ZieRj wji exp(fi(t)) + ZieAj wji exp(fi(t))

g(fi(t),... fi(t);w)) =

» Michaelis-Menten equation for a single TF can be obtained as
a special case

» Activation: A; = {1}, R, =0,
wjfi(t) f(t)
fi(t);wj) = . =
g( 1( ) WJ) l—i—lefl(t) ’Yj+f1(t)
» Repression: A; =0, Rj = {1}

_ w1 _ 1
T+ wah(t) %+ A0

g(f(t); w;j)

where ~; = ;-
J



MCMC

» Similar to the sigmoid model. But the set of the activators A;
and the set of repressors R; are sampled based on Gibbs
sampling by taking all possible combinations.



Artificial data

» We consider a set of 30 genes regulated by 3 TFs.

» Side information: We assume we know which TFs regulate
each gene, but we do not know whether a TF activates or
represses a certain gene

» We wish to estimate the TF profiles, kinetic parameters, etc

» and to predict which TFs are activators and which are
repressors for each gene



Artificial data

Figure: The inferred profiles of the three TFs. With red solid lines are the
ground-truth TFs used to generate the toy data. With blue lines shaded
error bars are the inferred TF profiles.



Artificial data

Figure: The predicted gene expressions. Red crosses represent the actual
gene expression and the blue line with shaded error bars are the
prediction found by MCMC.



Artificial data

Total classfication error regarding which TFs are activators and
which are repressors for each gene

0.2447 £ 0.0617



Discussion and Future Work



Discussion and Future Work

v

Nonlinear response makes standard GP approach intractable.

v

Approximate solutions include:

» Laplace's approximation.
» Sampling

Sampling approach allows for multiple TFs.
As system complexity increases identifiability drecreses.

In principle this isn't a problem for Bayesian approaches

vV v.v Y

In practice it can effect the mixing of the sampler.
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Control Point Sampling



Sampling using control points

» Separate the points in f into two groups:

» few control points f.
» and the large majority of the remaining points f, = f \ f.

» Sample the control points f. using a proposal g <f£t+1)|f£t)>

» Sample the remaining points f, using the conditional GP prior
(t+1),g(t+1)
P (fp Ife )

» The whole proposal is
Q <f(t+1)|f(t)> —p <f£t+1)|f£t+1)> q (f£t+1)|f£_t)>

» lIts like sampling from the prior p(f) but imposing random
walk behaviour through the control points



Sampling using control points: Regression-Examples

Sample 121 points using 10 control points

2 ; +
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Sampling using control points: Regression-Examples

Sample 121 points using 10 control points
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Sampling using control points: Regression-Examples

Sample 121 points using 10 control points




Sampling using control points: Regression-Examples
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Sampling using control points

Few samples drawn during MCMC
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