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Styles of Machine Learning
Background: interpolation is easy, extrapolation is hard

I Urs Hölzle keynote talk at NIPS 2005.
I Emphasis on massive data sets.
I Let the data do the work—more data, less extrapolation.

I Alternative paradigm:
I Very scarce data: computational biology, human motion.
I How to generalize from scarce data?
I Need to include more assumptions about the data (e.g.

invariances).



General Approach
Broadly Speaking: Two approaches to modeling
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Dimensionality Reduction

I Linear relationship between the data, Y ∈ <N×D , and a
reduced dimensional representation, U ∈ <N×q, where q � D.

Y = UW + ε,

ε ∼ N (0,Σ)

I Integrate out U, optimize with respect to W.
I For Gaussian prior, U ∼ N (0, I)

I and Σ = σ2I we have probabilistic PCA (Tipping and Bishop,

1999; Roweis, 1998).
I and Σ constrained to be diagonal, we have factor analysis.



Dimensionality Reduction: Temporal Data

I Deal with temporal data with a temporal latent prior.

I Independent Gauss-Markov priors over each ui (t) leads to :
Rauch-Tung-Striebel (RTS) smoother (Kalman filter).

I More generally consider a Gaussian process (GP) prior,

p (U|t) =

q∏
i=1

N
(
u:,i |0,Ku:,i ,u:,i

)
.

I Given the covariance functions for {ui (t)} we have an implied
covariance function across all {yi (t)}—(ML: semi-parametric
latent factor model (Teh et al., 2005), Geostatistics: linear
model of coregionalization).

I Rauch-Tung-Striebel smoother has been preferred
I linear computational complexity in N.
I Advances in sparse approximations have made the general GP

framework practical. (Titsias, 2009; Snelson and Ghahramani,

2006; Quiñonero Candela and Rasmussen, 2005).
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Introduction: covariances for multiple outputs
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Joint covariance

K be a valid covariance matrix

K =



Some approaches

I Linear model of coregionalization.

I Intrinsic coregionalization model.

I Multitask kernels.

I Convolution of covariances.

I Convolution of processes or convolution process.



Convolution Process

I A convolution process is a moving-average construction that
guarantees a valid covariance function.

I Consider a set of functions {fj (x)}D
j=1.

I Each function can be expressed as

fj (x) =

∫
X

Gj (x− z)u(z)dz = Gj (x) ∗ u(x).

I Influence of more than one latent function, {ui (z)}q
i=1 and

inclusion of an independent process wj (x)

yj (x) = fj (x) + wj (x) =

q∑
i=1

∫
X

Gj ,i (x− z)ui (z)dz + wj (x).
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Covariance of the output functions.

The covariance between yj (x) and yj ′(x′) is given as

cov
[
yj (x), yj ′(x′)

]
=cov

[
fj (x), fj ′(x′)

]
+ cov

[
wj (x),wj ′(x′)

]
δj ,j ′

where

cov
[
fj (x), fj ′(x′)

]
=

∫
X

Gj (x− z)

∫
X

Gj ′(x′ − z′)cov
[
u(z), u(z′)

]
dz′dz



Different forms of covariance for the output functions.

I Input Gaussian process

cov
[
fj , fj ′

]
=

∫
X

Gj (x− z)

∫
X

Gj ′(x′ − z′)ku,u(z, z′)dz′dz

I Input white noise process

cov
[
fj , fj ′

]
=

∫
X

Gj (x− z)Gj ′(x′ − z)dz

I Covariance between output functions and latent functions

cov [fj , u] =

∫
X

Gj (x− z′)ku,u(z′, z)dz′



Likelihood of the full Gaussian process.

I The likelihood of the model is given by

p(y|X,φ) = N (0,Kf ,f + Σ)

where y =
[
y>1 , . . . , y

>
D

]>
is the set of output functions, Kf ,f

covariance matrix with blocks cov
[
fj , fj ′

]
, Σ matrix of noise

variances, φ is the set of parameters of the covariance matrix
and X = {x1, . . . , xN} is the set of input vectors.

I Learning from the log-likelihood involves the inverse of
Kf ,f + Σ, which grows with complexity O(N3D3)



Predictive distribution of the full Gaussian process.

I Predictive distribution at X∗

p(y∗|y,X,X∗,φ) = N (µ∗,Λ∗)

with

µ∗ = Kf∗,f (Kf ,f + Σ)−1y

Λ∗ = Kf∗,f∗ −Kf∗,f (Kf ,f + Σ)−1Kf ,f∗ + Σ

I Prediction is O(DN) for the mean and O(D2N2) for the
variance, for one test point. Storage is O(D2N2).



Mechanical Analogy

Back to Latent Force Models!

I These models rely on the latent variables to provide the
dynamic information.

I We now introduce a further dynamical system with a
mechanistic inspiration.

I Physical Interpretation:

I the latent functions, ui (t) are q forces.
I We observe the displacement of D springs to the forces.,
I Interpret system as the force balance equation, YD = US + ε.
I Forces act, e.g. through levers — a matrix of sensitivities,

S ∈ <q×D .
I Diagonal matrix of spring constants, D ∈ <D×D .
I Original System: W = SD−1.



Extend Model

I Add a damper and give the system mass.

US = ŸM + ẎC + YD + ε.

I Now have a second order mechanical system.

I It will exhibit inertia and resonance.

I There are many systems that can also be represented by
differential equations.

I When being forced by latent function(s), {ui (t)}q
i=1, we call

this a latent force model.



Outline

Motivation and Review

Multiple Output Motivation

Second Order ODE

Motion Capture Example

Financial Data Example

Discussion and Future Work



Gaussian Process priors and Latent Force Models
Driven Harmonic Oscillator

I For Gaussian process we can compute the covariance matrices
for the output displacements.

I For one displacement the model is

mk ÿk(t) + ck ẏk(t) + dkyk(t) = bk +

q∑
i=0

sikui (t), (1)

where, mk is the kth diagonal element from M and similarly
for ck and dk . sik is the i , kth element of S.

I Model the latent forces as q independent, GPs with RBF
covariances

kui ul (t, t
′) = exp

(
−(t − t ′)2

`2
i

)
δil .



Covariance for ODE Model

I RBF Kernel function for u (t)

yj (t) =
1

mjωj

q∑
i=1

sji exp(−αj t)

∫ t

0
ui (τ) exp(αjτ) sin(ωj (t − τ))dτ

I Joint distribution
for y1 (t), y2 (t),
y3 (t) and u (t).
Damping ratios:
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Joint Sampling of y (t) and u (t)

I lfmSample
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Figure: Joint samples from the ODE covariance, black: u (t), red:
y1 (t) (underdamped), green: y2 (t) (overdamped), and blue: y3 (t)
(critically damped).
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Example: Motion Capture

Mauricio Alvarez and David Luengo (Álvarez et al., 2009)

I Motion capture data: used for animating human motion.

I Multivariate time series of angles representing joint positions.

I Objective: generalize from training data to realistic motions.

I Use 2nd Order Latent Force Model with mass/spring/damper
(resistor inductor capacitor) at each joint.
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Prediction of Test Motion

I Model left arm only.

I 3 balancing motions (18, 19, 20) from subject 49.

I 18 and 19 are similar, 20 contains more dramatic movements.

I Train on 18 and 19 and testing on 20

I Data was down-sampled by 32 (from 120 fps).

I Reconstruct motion of left arm for 20 given other movements.

I Compare with GP that predicts left arm angles given other
body angles.



Mocap Results

Table: Root mean squared (RMS) angle error for prediction of the left
arm’s configuration in the motion capture data. Prediction with the
latent force model outperforms the prediction with regression for all apart
from the radius’s angle.

Latent Force Regression
Angle Error Error
Radius 4.11 4.02
Wrist 6.55 6.65

Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14

Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09



Mocap Results II
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Figure: Predictions from LFM (solid line, grey error bars) and direct
regression (crosses with stick error bars).
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Financial data set

Multivariate financial data set: the dollar prices of the 3 precious
metals and top 10 currencies.
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Dynamic model

I Our model: a set of coupled differential equations, driven by
either a smooth Gaussian process, a white noise process, or
both,

dfj (t)

dt
=

q∑
i=1

si ,jui (t)− dj fj (t),

where dj is a decay coefficient and si ,j quantifies the influence
of the process ui (t).

I If {ui (t)}q
i=1 are white noise processes → Langevin equation

→ a linear stochastic differential equation.

I Solution for fj (t) has the form of convolutions. For a single
output and white noise process, fj (t)→ Ornstein-Uhlenbeck
(OU) process.



Some results
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Figure: Predictions from the model with Rs = 1 and Ro = 3 are shown as
solid lines for the mean and grey bars for error bars at 2 standard
deviations. The true values are shown as a dotted line. Crosses on the
x-axes of all plots show the locations of the inducing inputs.



Outline

Motivation and Review

Multiple Output Motivation

Second Order ODE

Motion Capture Example

Financial Data Example

Discussion and Future Work



Discussion and Future Work

I Integration of probabilistic inference with mechanistic models.

I Ongoing/other work:

I Non linear response and non linear differential equations.
I Scaling up to larger systems
I Robotics applications
I Computational biology applications
I Applications to other types of system, e.g. spatial systems.
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J. Quiñonero Candela and C. E. Rasmussen. A unifying view of sparse approximate Gaussian process regression.
Journal of Machine Learning Research, 6:1939–1959, 2005.

S. T. Roweis. EM algorithms for PCA and SPCA. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances
in Neural Information Processing Systems, volume 10, pages 626–632, Cambridge, MA, 1998. MIT Press.

E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Y. Weiss, B. Schölkopf, and
J. C. Platt, editors, Advances in Neural Information Processing Systems, volume 18, Cambridge, MA, 2006.
MIT Press.

Y. W. Teh, M. Seeger, and M. I. Jordan. Semiparametric latent factor models. In R. G. Cowell and Z. Ghahramani,
editors, Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, pages
333–340, Barbados, 6-8 January 2005. Society for Artificial Intelligence and Statistics.

M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. Journal of the Royal Statistical
Society, B, 6(3):611–622, 1999. [PDF]. [DOI].

M. K. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In van Dyk and Welling
(2009), pages 567–574.

D. van Dyk and M. Welling, editors. Artificial Intelligence and Statistics, volume 5, Clearwater Beach, FL, 16-18
April 2009. JMLR W&CP 5.

http://jmlr.csail.mit.edu/proceedings/papers/v5/alvarez09a/alvarez09a.pdf
http://www.robots.ox.ac.uk/~cvrg/hilary2006/ppca.pdf
http://dx.doi.org/doi:10.1111/1467-9868.00196

	Motivation and Review
	Multiple Output Motivation
	Convolution Processes
	Full Likelihood
	Motivation Continued

	Second Order ODE
	Motion Capture Example
	Financial Data Example
	Discussion and Future Work
	References

