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Talk Overview

Feynman on Biology:
“There’s Plenty of Room at the Bottom: An Invitation to Enter a
New Field of Physics” Feynman (1959).

Systems biology: Interaction of Biological Components

Differentiates from a Reductionist approach to biology that previously
dominated.

Course based on edited volume from MIT Press “Learning and
Inference in Computational Systems Biology” Lawrence et al. (2010)
(in press).

I Models of Transcriptional Regulation.
I Gaussian Process Inference for Linear Activation.
I Non-linear Response Models.
I Cascaded Differential Equations.
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Can a Biologist Fix a Radio? Lazebnik (2002)

“It is difficult to find a black cat in a dark room, especially if
there is no cat.”

Biological systems are immensely complicated.

Lazebnik argues the need for models that are quantitative.
I Such models should be predictive of biological behaviour.
I Such models need to be combined with biological data.

Our objective:
I Establish the need for such models.
I Describe some approaches to constructing these models.
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Reductionist Thinking

Reductionism Garfinkel (1991) breaks down a system into its
component parts.

I A human body is just a collection of biological cells.
I A biological cell is just a collection of biochemical interactions.
I Chemical compounds are just are just a collection of atoms.
I Atoms are just a collection protons, neutrons and electrons.
I Conclusion: to understand a human we must just understand protons,

neutrons and electrons.
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Systems Approach

There is little point in reducing a system as far as its component parts
(quarks and leptons ... strings (M-theory) ...) if the questions are at a
higher level: How does a plane fly?

A disease may be caused by a mutation in one gene, but curing the
disease may involve the entire pathway.

Study the system at the level in which we want to ask questions:

I e.g. Which proteins interact in the ERK/MAPK signalling
pathway?
This is a critical pathway in cell proliferation. Of strong interest in
cancer.
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Machine Learning and Systems Biology

Where learning and inference come in?

I Models of interaction are not fully characterised. Use inference and
learning to deal with unknowns.

Is this what we normally do in machine learning?

I No — models are mechanistic in inspiration not black box.
I However, perhaps it’s what we will do in the future!

My prediction: Machine learning in the future will have two major
foci.

1 V. large data sets, e.g. prediction of relevant adverts.
2 Small data set relative to complexity of the system.

F Not enough information to describe the model. Need to turn to
mechanistic models to help.

F Lessons from large data set will still apply as system may be very
complex!

A big focus for our research in Manchester: inference in mechanistic
models.
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Systems Biology

Systems biology provides an opportunity to analyse complex systems
by combining prior knowledge with data.

Integrate data with knowledge of the chemical kinetics of the system.

These lectures:

I Philosophical motivation.
I Review of transcription.
I Chemical kinetics in a simple synthetic biology system.
I Inference of hidden variables in single input motifs.
I Model selection through Bayes’ factors.
I Gaussian process models and differential equations.
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What is Systems Biology?

We think of systems as in “system identification”.

We want to develop computational techniques to uncover, ideally, the
true underlying mechanisms.

We refer to this field as “Computational Systems Biology”.

Develop algorithms that uncover the structure and parametrization of
the underlying mechanistic model.

More precisely: we wish to answer specific questions about the
underlying mechanisms.

We can think of this process as learning or inference.
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Reverse Engineering Biological Networks

Traditional approaches to system identification cannot be directly
applied.

I observation of the state variables of the system is only possible at
relatively low sampling rates.

I there is a strong stochastic component to biological systems. (either
intrinsic or from the measurement process).

I Biological systems have evolved. Organism survival dictates they are
robust to environmental changes and mutations. This implies
redundancy.

Taken together these characteristics distinguish biological systems
from standard engineering systems.
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Indentifiability and Biological Systems

A major challenge is the identifiability of the system.

Selection pressure for robustness results in highly redundant pathways.

Biological systems are dependent on kinetic rates that are highly
temperature dependent.

Contrast this with a human designed analogue electrical circuits: we
use ceramic capacitors for timing circuits because of high tolerance to
temperature changes.

As we will see from the repressilator example, (Elowitz and Leibler,
2000), a simple biological oscillator has a strong variation in
amplitude, phase and period of oscillation.

If a system’s output is insensitive to its parameters, it is difficult to
identify the parameters given the system output.
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Systems Biology and the Scientific Process

Available data has increased dramatically for biology, however, data is
scarce relative to the complexity of the system.

Identifiability problems are made worse by data scarcity.

What are the prospects for serious progress in Computational Systems
Biology?

Despite these issues, prospects are good.

Identifiability problems exist, but do they effect our ability to answer
fundamental scientific questions?

Neil D. Lawrence (Tampere) ML Systems Biology 22nd June 2009 14 / 91



Systems Biology and the Scientific Process

Available data has increased dramatically for biology, however, data is
scarce relative to the complexity of the system.

Identifiability problems are made worse by data scarcity.

What are the prospects for serious progress in Computational Systems
Biology?

Despite these issues, prospects are good.

Identifiability problems exist, but do they effect our ability to answer
fundamental scientific questions?

Neil D. Lawrence (Tampere) ML Systems Biology 22nd June 2009 14 / 91



Systems Biology and the Scientific Process

Available data has increased dramatically for biology, however, data is
scarce relative to the complexity of the system.

Identifiability problems are made worse by data scarcity.

What are the prospects for serious progress in Computational Systems
Biology?

Despite these issues, prospects are good.

Identifiability problems exist, but do they effect our ability to answer
fundamental scientific questions?

Neil D. Lawrence (Tampere) ML Systems Biology 22nd June 2009 14 / 91



Systems Biology and the Scientific Process

Available data has increased dramatically for biology, however, data is
scarce relative to the complexity of the system.

Identifiability problems are made worse by data scarcity.

What are the prospects for serious progress in Computational Systems
Biology?

Despite these issues, prospects are good.

Identifiability problems exist, but do they effect our ability to answer
fundamental scientific questions?

Neil D. Lawrence (Tampere) ML Systems Biology 22nd June 2009 14 / 91



Systems Biology and the Scientific Process

Available data has increased dramatically for biology, however, data is
scarce relative to the complexity of the system.

Identifiability problems are made worse by data scarcity.

What are the prospects for serious progress in Computational Systems
Biology?

Despite these issues, prospects are good.

Identifiability problems exist, but do they effect our ability to answer
fundamental scientific questions?

Neil D. Lawrence (Tampere) ML Systems Biology 22nd June 2009 14 / 91



A Scientific Framework for Systems Biology

Popper’s philosophy of science: creation of models that are predictive
and refutable.

An ongoing process of hypothesis generation, followed by observation
followed by an update of the hypothesis.

Quoting from Popper:

The problem ‘Which comes first, the hypothesis (H) or the
observation (O)?’ is soluble; as is the problem, ‘Which comes
first, the hen (H) or the egg (O)?’. The reply to the latter is,
‘An earlier kind of egg’; to the former, ‘An earlier kind of
hypothesis’. Popper (1963)
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Hypothesis Driven Research

Some modern biological work decried for “Not being hypothesis
driven”.

Popper allows for this approach.

Our observations must be couched in a frame of (even vague)
expectations.

Some expectations are refuted by observation: expectations are
updated.

This is an excellent model for research in systems biology.
I Expectations are couched in the form of mathematical idealizations of

the system (the earlier egg).
I Refutation through observation arises through biological experiment

(the hen).
I This gives rise to a modified hypothesis (the new egg).

Systems biology as an iterative experimental spiral: incrementally
improving our understanding of the biological system.
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Formal Expression of Framework

Can we express such a framework more formally?

Dawid’s prequential approach Dawid (1984).

Prequential: contraction of probability forecasting with sequential
prediction.

I Dawid argues we should consider the parameters only as summarizing
the acquired knowledge.

I Predictions of the model are the critical element.
I The ‘egg’ is a prequential forecaster.
I Selected biological experiments are designed to refute those predictions.
I Dawid (1982) shows how prequential forecasts which fail the ‘complete

calibration’ are refuted.
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Prequential Forecasting: Jeffrey’s Law

Quoting from Dawid (Jeffrey’s Law):

... Consequently, all non rejected [prequential forecasting systems]
end up making the same forecasts.

This is an interesting and unexpected boon: in just those cases
where we cannot choose empirically between several forecasting
systems, it turns out that we have no need to do so! This property has
implications for Philosophy of Science, giving some support to Popper’s
methodology, wherein a number of alternative hypotheses about
Nature may be put forward, each being retained until it is refuted
because its forecasts depart from observation. In our context, such
refutation follows evidence that the complete calibration criterion is
violated. This approach need not pick out, even asymptotically, a single
“true model”. (Indeed there is no need even to assume the existence of
an underlying “true” law generating the data.) Using it, we should,
however, eventually be left only with [prequential forecasting systems]
that can all be expected to continue to make essentially identical
predictions. Dawid (1984)
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Systems Biology in Practice

Choose a mathematical framework that allows us to sustain multiple
hypotheses (e.g. a Bayesian approach).

Our mathematical idealization needs to be combined with a large
quantity of data. (system is very complex even scarce data could be
gigabytes of data.)

This practical requirement becomes difficult to fulfil as the complexity
of the mathematical idealization increases.

The idea of starting with a family of hypotheses representing all
conceivable variations on the system design is not practicable.
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Modelling Compromise

Simplify the model.
I Even if the underlying biochemical system exhibits dynamical behavior,

we might assume that high decay implies system is at steady state.
I Leads to practical savings.
I Experiments at high sample rates will refute hypothesis.
I Simplification is worth pursuing: the scientific question may be

answered before high sample rate experiments are required.
I This set up is a modelling compromise.
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Inference Compromise

Use of approximate inference techniques.

Bayes’ rule,

p (θ|Y) =
p (Y|θ) p (θ)∫

p (Y|θ) p (θ) dθ

requires integral over parameters.

Replacing integrals with approximations is an inference compromise.

Examples include the Laplace approximation, variational
approximations and sampling.
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Systems Biology and Scientific Judgement

In practice a combination of modelling and inference compromises is
often required.

We will present approaches with both modelling and inference
compromises.

Compromises imply we are departing from the pure framework we
outlined.

The degree of departure that’s allowable is a matter for careful
scientific judgment in the context of a given question.

We develop new methodologies to try and ensure that compromises
are as small as possible.
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Transcriptional regulation of gene expression
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RNA Polymerase

Figure: RNA Polymerase transcribing RNA from DNA. Image from “Molecule of
the Month” at the protein data bank:
http://mgl.scripps.edu/people/goodsell/pdb/pdb98/pdb98_1.html
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Repression
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The Repressilator

Real biology involves interaction of several systems.

The repressilator is the first synthetic biology oscillator (Elowitz and
Leibler, 2000).

Implemented in E. coli bacteria.

How do we model such a system?
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The Repressilator

Figure: Repressilator Plasmid. (Elowitz and Leibler, 2000)
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Bacteria Plasmids

Figure: Schematic of a bacterium with plasmids (Image from wikimedia
commons).
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Repressilator Results

Figure: Observations of GFP. Source http://en.wikipedia.org/wiki/Image:
Repressilator_observations_1.png
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Stochastic Processes and Mass Action Kinetics

Further reading: Wilkinson (2006, Chapters 1 and 6) Lawrence et al.
(2010, Chapters 10, 11, and 12)

Mass action kinetics — reaction occurs when relevant molecules
collide.

Probability of any given reaction, i , occuring in a given instant
interval of time dt is given by hidt + o (dt).

I Where hi is a rate law or hazard function. It is dependent on the
current state of the system and ci a stochastic rate constant.

Represent a reaction in the form

X1 + X2 → X3 + X4

where X1 and X2 are the reactants and X3 and X4 are the products.
Denote numbers of each species by x1, x2, x3 and x4. State of the
system given by vector x.
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Stochastic Mass Action Kinetics

Zeroth order:
0→ X1

probability of this reaction in interval dt is hidt = cidt

First order (e.g. decay):
X1 → 0

probability of this rection in interval dt is hidt = cix1dt

Second order:
X1 + X2 → X3,

probability of this reaction in interval dt is hidt = cix1x2dt.

For individual reaction, waiting time, τi , is sampled from
p (τi ) = hi exp (−hiτi ).
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Combining Reactions

Typical system has multiple reactions at the same time.

The hazard is a “rate” parameter — if there were no other reactions
waiting time until the reaction would be given by an exponential.

In practice there are other reactions and associated hazards,
h = {hj}Mj=1.

Each reaction can affect all other hazard functions, hi (x, ci ).

Sample from the system (Gillespie’s first reaction method):

1 Sample time of next reaction from all reactions:
{τi}Mi=1, τi ∼ hi exp (−hiτi ) .

2 Find next reaction µ = argminiτi .
3 Update state of system, x, according to rule for that reaction.
4 Recompute vector of hazards, h.
5 Repeat
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Gillespie’s Direct Method

Previous sampling scheme: M random numbers (1 for each reaction).

Exploit properties of exponential:

I τj is the minimum value from {τi}Mi=1 sampled from different

exponentials with rates {hi}Mi=1.
I This implies: τj ∼ h0 exp (−h0τj) where h0 =

∑M
i=1 hi and is known as

the combined reaction hazard.
I i.e. in each small time interval probability of any reaction is h0dt.

The probability of it having arisen from the jth reaction is given by

hj

h0

cf superposition of Poisson processes.
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Sampling the System

Gillespie Direct Method

1 Compute the hazards, h.

2 Sample time of next reaction from τµ ∼ h0 exp (−h0τµ)

3 Determine which reaction it was: sample µ from a multinomial with
probabilities given by

hj

h0
.

4 Update the state of the system, x.

5 Increment time t → t + τµ.

6 Repeat until simulation time complete.

This is O (M).

Can do in O (log M) — use a dependency graph to determine when
things need calculation Gibson and Bruck (2000).
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Repressilator Simulation

Translation:

mlac→ Lac + mlac

First order reaction of mRNA from lac gene to protein plus mRNA from
lac gene.
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Repressilator Simulation

mRNA decay:
mlac→ 0

First order reaction of mRNA from lac gene.
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Repressilator Simulation

Protein decay:
Lac→ 0

First order reaction of Lac protein.
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Repressilator Simulation

Transcription:

lac + RNAP→ mlac + RNAP + lac

Second order reaction of lac gene and RNA polymerase to lac mRNA, lac
gene and RNA polymerase.
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Repressilator Simulation

Protein (TF) bound to promoter:

Cl + lac→ Cl · lac

Second order reaction, TF protein (Cl) from another gene binds to lac
promoter (represented by the gene). This prevents transcription.
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Repressilator Simulation

Protein unbinds from promoter:

Cl · lac→ Cl + lac

First order reaction, TF protein and lac promoter region unbind, allowing
transcription to take place.
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Other Implementation Details

The effect of each reaction is stored in a matrix S, the stoichiometry
matrix.

A row of this matrix is added to the state vector, x, to account for
effects from each reaction.
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Simulation Result
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Figure: Simulation of repressilator using Gillespie algorithm. Red is mRNA for lac,
Green is mRNA for tetR and Blue is mRNA for cl.
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What Next?

Simulation from the system assumes we know structure
(stoichiometric matrix, S) and parameters (stochastic rate
parameters, c).

Structure may be known or assumed.

Specifying parameters is more complex.

I In chemistry in vitro measurements can be made.
I In biology this is more difficult and perhaps less valid.

Can we do learning? — this is where ML comes in!

I If x is observed directly in v. high time resolution: yes.
I In practice it is indirectly observed in lower time resolution.

Learning in stochastic systems is difficult as marginalisation of these
unknowns is required.
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Modelling Compromise: A Deterministic Approximation

Approximate the stochastic system by dealing in deterministic
concentrations.

In chemistry concentrations involve large numbers, and the
approximation is good.

In biology this is generally less true. But often we pool mRNA from
many cells.

For Mass Action Kinetics:

X1 + X2 → X3

X3 → 0

leads to
d [X3]

dt
= k1 [X1] [X2]− k2 [X3]

with [Xi ] representing concentration of species Xi .
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Repressilator Simulation

Translation:

mlac→ Lac + mlac

d [Lac]

dt
= −k3 [Lac]− k4 [Lac] [mtetR] + k5 [mlac] + k6 [Lac · tetR]

First order reaction of mRNA from lac gene to protein plus mRNA from
lac gene.
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Repressilator Simulation

mRNA decay:
mlac→ 0

d [mlac]

dt
= k1 [RNAP] [lacl1]−k2 [mlac]

First order reaction of mRNA from lac gene.
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Repressilator Simulation

Protein decay:
Lac→ 0

d [Lac]

dt
= −k3 [Lac]− k4 [Lac] [mtetR] + k5 [mlac] + k6 [Lac · tetR]

First order reaction of Lac protein.
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Repressilator Simulation

Transcription:

lac + RNAP→ mlac + RNAP + lac

d [mlac]

dt
= k1 [RNAP] [lacl]− k2 [mlac]

Second order reaction of lac gene and RNA polymerase to lac mRNA, lac
gene and RNA polymerase.
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Repressilator Simulation

Protein (TF) bound to promoter:

Cl + lac→ Cl · lac

d [Cl · lac]

dt
= k8 [Cl] [lac]−k10 [Cl · lac]

d [Cl]

dt
= −k7 [Cl]−k8 [Cl] [lac] + k9 [mcl] + k10 [Cl · lac]

d [lac]

dt
= −k8 [Cl] [lac] + k10 [Cl · lac]

Second order reaction, TF protein (Cl) from another gene binds to lac
promoter (represented by the gene). This prevents transcription.
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Repressilator Simulation

Protein unbinds from promoter:

Cl · lac→ Cl + lac

d [Cl · lac]

dt
= k8 [Cl] [lac]−k10 [Cl · lac]

d [Cl]

dt
= −k7 [Cl]− k8 [Cl] [lac] + k9 [mcl] + k10 [Cl · lac]

d [lac]

dt
= −k8 [Cl] [lac] + k10 [Cl · lac]

First order reaction, TF protein and lac promoter region unbind, allowing
transcription to take place.
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Simulated Repressilator
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Figure: Simulation of repressilator based on ODEs from COPASI Hoops et al.
(2006).
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Fitting ODE Models

Find parameters that allow model to fit a given data set.

For given parameters and inital conditions solve the system and
compare to data.

Minimise the least squares match to the data with respect to
parameters and initial conditions.

Multimodal optimisation: tools available for fitting (COPASI Hoops
et al. (2006)).

Problems remain:

1 How do we deal with a missing chemical species (e.g. TF
concentration)?
It is common to be missing one or more of the state variables.

2 What to do if certain parameters aren’t well identified?
The system outputs may be insensitive to some parameters.

3 If several hypothesised models exist, which should we choose?
Bayesian approaches to model ranking: Bayes’ factors.
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ODE Model of Activation

Linear Activation Model (Barenco et al., 2006, Genome Biology)

dxj (t)

dt
= Bj + Sj f (t)− Djxj (t)

Slight change in notation:

I xj (t) – concentration of gene j ’s mRNA
I f (t) – concentration of active transcription factor
I Model parameters: baseline Bj , sensitivity Sj and decay Dj

I Application: identifying co-regulated genes (targets)
I Problem: how do we fit the model when f (t) is not observed?
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Why use a model-based approach?

Model based approach to co-regulated targets ...

I clustering is often used but,
I co-regulated genes can differ greatly in their expression profiles
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Clustering cannot be relied on to identify co-regulated genes

A model-based approach is required
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Cell Damage

Radiation damages molecules in the cell.

Most of this damage is quickly repaired — single strand breaks,
backbone break.

Double strand breaks are more serious — a complete disconnect along
the chromosome.

Cell cycle stages:

I G1: Cell is not dividing.
I G2: Cell is preparing for meitosis, chromosomes have divided.
I S: Cell is undergoing meitosis (DNA synthesis).

Main problem is in G1. In G2 there are two copies of the
chromosome. In G1 only one copy.
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p53 “Guardian of the Cell”

Responsible for Repairing DNA damage

Activates DNA Repair proteins

Pauses the Cell Cycle (prevents replication of damage DNA)

Initiates apoptosis (cell death) in the case where damage can’t be
repaired.

Large scale feeback loop with NF-κB.
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p53 DNA Damage Repair

Figure: p53. Left unbound, Right bound to DNA. Images by David S. Goodsell
from http://www.rcsb.org/ (see the “Molecule of the Month” feature).
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p53

Figure: Repair of DNA damage by p53. Image fromGoodsell (1999).
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Some p53 Targets

DDB2 DNA Damage Specific DNA Binding Protein 2. (also
governed by C/ EBP-beta, E2F1, E2F3,...).

p21 Cycline-dependent kinase inhibitor 1A (CDKN1A). A
regulator of cell cycle progression. (also goverened by
SREBP-1a, Sp1, Sp3,... ).

hPA26/SESN1 sestrin 1 Cell Cycle arrest.

BIK BCL2-interacting killer. Induces cell death (apoptosis)

TNFRSF10b tumor necrosis factor receptor superfamily, member 10b. A
transducer of apoptosis signals.
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Modelling Assumption

Assume p53 affects targets as a single input module network motif
(SIM).

p53

p21

DDB2

PA26

BIK

TNFRSF10b

Figure: p53 SIM network motif as modelled by Barenco et al. 2006.
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Response of p53 to Ionizing Radiation

Experiment by Barenco et al. 2006.

Human leukemia cell line (MOLT4) containing functional p53 and
harvested protein and RNA at regular intervals after irradiation.

The time course was performed in triplicate, and mRNA
concentrations measured using Affymetrix U133A microarrays.
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Mathematical Model

Reorder differential equations

dxj (t)

dt
+ Djxj (t) = Bj + Sj f (t)

We have observation of xj (t).

An estimate of
dxj (t)

dt is obtained through fitting polynomials.

Jointly estimate f (t) at observations of time points along with
{Bj ,Dj ,Sj}gj=1.

Use MCMC sampling or maximum likelihood for parameters.
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Response of p53

Figure: Results from Barenco et al. (2006). Top is parameter estimates. Bottom
is inferred profile.
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Respose to p53 ...

Figure: Results from Barenco et al. (2006). Activity profile of p53 was measured
by Western blot to determine the levels of ser-15 phosphorylated p53
(ser15P-p53).
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Models of non-linear regulation

Non-linear Activation: Michaelis-Menten Kinetics

dxi (t)

dt
= Bi +

Si f (t)

γi + f (t)
− Dixi (t)

used by Rogers and Girolami (2006)

Non-linear Repression

dxi (t)

dt
= Bi +

Si

γi + f (t)
− Dixi (t)

used by Khanin et al., 2006, PNAS 103
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SOS Response

Post replication DNA system: allows DNA replication to bypass errors
in the DNA.

DNA damage may occur as a result of activity of antibiotics.

LexA is bound to the genome preventing transcription of the SOS
genes.

RecA protein is stimulated by single stranded DNA, inactivates the
LexA repessor.

This allows several of the LexA targets to transcribe.

The SOS pathway may be essential in antibiotic resistance Cirz et al.
(2005).

Aim is to target these proteins to produce drugs to increase efficacy
of antibiotics Lee et al. (2005).
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LexA Experimental Description

Data from Courcelle et al. (2001)

UV irradiation of E. coli. in both wild-type cells and lexA1 mutants,
which are unable to induce genes under LexA control.

Response measured with two color hybridization to cDNA arrays.
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Their Model

Given measurements of gene expression at N time points (t0, t1, . . . , tN−1),
the temporal profile of a gene i , xi (t), that solves the ODE in Eq. 1 can
be approximated by

xi (t) = x0
i e−δi t +

Bi

Di
+ Sie

−δi t 1

Di

N−2∑
j=0

(
eDi tj +1 − eDi tj

) 1

γi + f̄j

where f̄j =
(f (tj)+f (tj +1))

2 on each subinterval
(tj , tj + 1) , j = 0, . . . ,N − 2. This is under the simplifying assumption
that f (t) is a piece-wise constant function on each subinterval (tj , tj + 1).
One can come up with linear (or higher order) f (t) approximations
on each subinterval. This will introduce additional parameters,
which will be impossible to infer with any certainty given limited
amount of data.

Khanin et al. (2006)
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Their Results

Figure: Fig. 2 from Khanin et al. (2006): Reconstructed activity level of master
repressor LexA, following a UV dose of 40 J/m2.
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Their Results

Figure: Fig. 3 from Khanin et al. (2006): Reconstructed profiles for four genes in
the LexA SIM.
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Actin and Ribosomes

Figure: E. coli cell. Illustration courtesy of David S. Goodsell
http://mgl.scripps.edu/people/goodsell/illustration/public.
Confined structure leads to attempts to characterise diffusion in confined spaces,
e.g. Schuss et al. (2007)
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ERK Signalling Pathway

Epidermal Growth Factor
40,000-100,000 EGFR per cell.

Over expressed in tumours —
some breast cancer cells
2× 106receptors per cell Herbst
(2004).

Over expression leads to an
intense signal generation and
activation of down stream
signalling pathways.

Figure: MAPK Pathway
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Multiple Mechanistic Models

Vyshemirsky and Girolami (2008).

Multiple mechanistic models describing a pathway.
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Multiple Mechanistic Models

Vyshemirsky and Girolami (2008).

Multiple mechanistic models describing a pathway.

Model 1 Model 2 Model 3
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Differential Equations

Models are formally defined using systems of ordinary differential
equations:

d [EGF]

dt
= −k1 [EGF] [EGFR]

d [Rap1a]

dt
=

Kcat12 [Rap1i ]

Km12 + [Rap1i ]
[EPAC]− V13 [Rap1a]

K13 + [Rap1a]

d [MEK]

dt
= −Kcat21 [MEK] [Raf]− 1

Km21 + [MEK]
− Kcat22 [MEK]

Km22 + [MEK]
[BRaf]

Model 1 Model 2
50 kinetic parameters 55 kinetic parameters
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Bayes’ Factors

Which hypothesised structure is best supported by the data?

Use Bayes factors: P(M1|D)
P(M2|D) , ratio of model marginal likelihoods.

Difficulty is computing P (M1|D).

Turn to the thermodynamic integral for results.
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Thermodynamic Integral

Gelman and Meng (1998)

p (θ|x,M, α) =
p (x|θ,M)α p (θ|M)

Zα

d
dα

log Zα =
1

Zα

d
dα

Zα = 〈log p (x|θ)〉p(θ|x,M,α)

giving

log p (x|M) =

∫ 1

0
〈log p (x|θ)〉p(θ|x,M,α) dα
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Estimation through Sampling

Construct estimator using samples drawn from prior and all
intermediate densities up to the posterior. Gelman and Meng (1998);
Friel and Pettit (2008); Lartillot and Philippe (2006).

Represent integral by discrete αi values and expectation using
trapezoidal rule

log p(y) =
1

2

L∑
i=1

∆i

[
〈log p(y|θ)〉p(θ|y,αi−1) + 〈log p(y|θ)〉p(θ|y,αi )

]
+

1

2

L∑
i=1

εi , (1)

where ∆i = αi − αi−1, discretization error is
εi = KL (pi−1 ‖ pi )−KL (pi ‖ pi−1).
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Posterior for Different α

Figure: Annnealing of likelihood. (here α = 1 )
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Posterior for Different α

Figure: Annnealing of likelihood. (here α = 0.55 )
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Posterior for Different α

Figure: Annnealing of likelihood. (here α = 0.28 )
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Posterior for Different α

Figure: Annnealing of likelihood. (here α = 0.13 )
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Posterior for Different α

Figure: Annnealing of likelihood. (here α = 0.05 )
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Posterior for Different α

Figure: Annnealing of likelihood. (here α = 0)
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Population Monte Carlo

Further problems from highly multimodal posteriors — use population
Monte Carlo methods.
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1
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Figure: Far Left: standard Monte Carlo gets stuck in different modes. Middle left:
exploration of space for low α. Middle right: intermediate α allows movement
between modes. Far left: information is exchanged between samples to allow full
exploration of posterior.
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Result

Bayes’ Factors for ERK signalling: Result
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Hypothesis Implications

Double branched model has much better support from the
experimental evidence: leads to a robust system.

BRaf was found to be more active than Raf-1. This is confirmed by a
number of publications in biochemical journals.

siRNA Knock-Down experiments have confirmed dual-branch
hypothesis (Walter Kolch).
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Story So Far

Systems biology presents us with models and data.

Challenge for machine learning: introduce our inference techniques to
this domain.

Lots of work on methodological developments necessary still.

Next: an approach to dealing with differential equations with missing
chemical species.

I Gaussian processes allow integration of Bayesian probabilistic inference
with differential equations.
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