An Introduction to Systems Biology from a Machine
Learning Perspective |l

Neil D. Lawrence
work with Magnus Rattray, Pei Gao, Antti Honkela, Michalis Titsias
and Jennifer Withers

Tampere University of Technology, Finland

23rd June 2009

Neil D. Lawrence (Tampere) ML Systems Biology 23rd June 2009 1/76



@ GPs and Differential Equations
© Cascaded Differential Equations
© Non-linear Response Models
@ Discussion and Future Work

© Acknowledgements

Neil D. Lawrence (Tampere) ML Systems Biology



@ GPs and Differential Equations
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Quoting from Khanin et al.:

One can come up with linear (or higher order) f (t)
approximations on each subinterval. This will introduce
additional parameters, which will be impossible to infer with any
certainty given limited amount of data.

Khanin et al. (2006)
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ODE Model of Activation

@ Linear Activation Model (Barenco et al., 2006, Genome Biology)

dx; (t)

I = BT Sf () Dix(t)
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ODE Model of Activation

@ Linear Activation Model (Barenco et al., 2006, Genome Biology)
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ODE Model of Activation

@ Linear Activation Model (Barenco et al., 2006, Genome Biology)
dx; (t)
— = B Sf(0)-Dx(y)

xj(t) — concentration of gene j's mRNA

f(t) — concentration of active transcription factor

°
°
@ Model parameters: baseline B;, sensitivity S; and decay D;
@ Application: identifying co-regulated genes (targets)

°

Problem: how do we fit the model when f(t) is not observed?
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Why use a model-based approach?

@ Co-regulated genes can differ greatly in their expression profiles
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@ Clustering cannot be relied on to identify co-regulated genes
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Why use a model-based approach?

@ Co-regulated genes can differ greatly in their expression profiles

210764_t - CYR61 204748t - PTGS2
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@ Clustering cannot be relied on to identify co-regulated genes

@ A model-based approach is required
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Models of non-linear regulation

@ Non-linear Activation: Michaelis-Menten Kinetics

d(t) . | Sf(y) -
5 =B S F(e jx; (t)

used by Rogers and Girolami (2006)
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Models of non-linear regulation

@ Non-linear Activation: Michaelis-Menten Kinetics

by (t) 5 Sf()

dt T+ (2) % ()
used by Rogers and Girolami (2006)
@ Non-linear Repression
dx; (t) Sj
=B+ —————Dix; (t
dt J+7J-+f(t) 7% ()

used by Khanin et al., 2006, PNAS 103
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Standard inference approach

@ Previous approaches all use similar inference methodology:
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Standard inference approach

@ Previous approaches all use similar inference methodology:

» Represent f(t) as coarse-grained piecewise continuous function
(A, B, fdl

» Often discretize where data are collected

» Treat f; as additional model parameters
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Standard inference approach

@ Previous approaches all use similar inference methodology:

» Represent f(t) as coarse-grained piecewise continuous function
[f, 2y ..o, fal

» Often discretize where data are collected

» Treat f; as additional model parameters

» Use maximum likelihood or Bayesian MCMC to estimate {f;} along
with other model parameters of interest

@ Limitations:

» Arbitrary choice of discretization points
» Coarse-grain gives crude approximation to f(t)
» Fine-grain leads to harder inference problem
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Gaussian Processes

@ Gaussian Process

where

m (t)
k(t,t)

Neil D. Lawrence (Tampere)

f(t) « GP (m(t), k (£, 1))

= E[f ()] = (f(t))
= E[(f(t) = m(t) (F (£) = m(¢))]

» Skip Covariance Functions

ML Systems Biology



Covariance Functions

RBF Kernel Function
t— t')?
k (t, t/) = aexp <—%)

@ Covariance matrix is built
using the inputs to the
function t.

@ For the example above it
was based on Euclidean
distance.

@ The covariance function is
also know as a kernel.
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Different Covariance Functions

MLP Kernel Function

/
k(t,t') = asin™ ( wit b )
Vwt2 + b+ 1vVwt? + b+ 1

@ A non-stationary
covariance matrix (Williams,
1997).

@ Derived from a multi-layer
perceptron (MLP).
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Covariance Samples

demCovFuncSample

o

Figure: RBF kernel with v = 1072, a=1
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with /=1, a =1
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Covariance Samples

demCovFuncSample

o
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Figure: RBF kernel with / =0.3, a =4
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Covariance Samples

demCovFuncSample

o

1S

o

Figure:  MLP kernel with « =8, w = 100 and b = 100
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Covariance Samples

demCovFuncSample

o
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Figure:  MLP kernel with « =8, b =0 and w = 100
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Linear Activation Model

Recall the linear model

dx; (t)
dt

= Bj + ij(t) — D_,'Xj (t) .

This differential equation can be solved for x; (t) as

B; t
X (t) = =2 + 5,-/ e D=0 f () du .
D; 0
Note: This is a linear operation on f (t).

If f(t) is a zero mean Gaussian process then x; (t) is also a Gaussian

i B;
process with mean D -

» Skip GP Properties
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Two Properties of GPs

The integral of a GP is also a GP,

f(t) ~ N(O, Kff)

and .
g(0)= [ f(w)
0
then
g(t) ~ N(0,Kg),
where

t pt
keg (t, t’) 2/0 /0 ker (u, u’) dudd/
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Two Properties of GPs

Product with deterministic function
Product with a deterministic function leads to another GP,

f(t) ~ N(O, Kff) s

and
g (t) =f(t)h(t)
where h(t) is a deterministic function then,

g(t) ~ N(0,Kgg),

where
keg (t.t") = h(t) ke (t, ') h (1)
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Covariance for Transcription Model

RBF covariance function for f (t)

. t
xi(t) = % + Siexp (—D,-i.“)/0 f (u)exp (Diu)du.

Z 5\ Bl
\\’n

(t) 1 (t) 3(t)

@ Joint distribution
for x1 (t), x2 (t)
and f (t).
> Here:
(D[S D] 5 |
| 55 ]05]05]

Se s ot

» Skip SIM Samples
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Joint Sampling of x (t) and f (t) from Covariance

gpsimTest
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Figure: Left: joint samples from the transcription covariance, blue: f (t), cyan:
x1 (t) and red: xa (t). Right: numerical solution for f (t) of the differential
equation from xy (t) and x; (t) (blue and cyan). True f (t) included for
comparison.
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Joint Sampling of x (t) and f (t) from Covariance
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Figure: Left: joint samples from the transcription covariance, blue: f (t), cyan:
x1 (t) and red: xa (t). Right: numerical solution for f (t) of the differential
equation from xy (t) and x; (t) (blue and cyan). True f (t) included for
comparison.
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Joint Sampling of x (t) and f (t) from Covariance

gpsimTest
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Figure: Left: joint samples from the transcription covariance, blue: f (t), cyan:
x1 (t) and red: xa (t). Right: numerical solution for f (t) of the differential
equation from xy (t) and x; (t) (blue and cyan). True f (t) included for
comparison.
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Covariance Function

Any linear opearation of a GP = Related GP

f(t) ~ GP (0, ke (t, 1)) = x; (t) ~ GP (%, ke (t, t'))

Hence, the cross-covariances between the genes is

t ot
by (8.6) =515 [ [ & P00k (¢) duds
0 J0

Cross-covariances between x; (t) and f (t) is

t
k. (£, ) :/0 e Ptk ¢ (t,) du .
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Prediction of the transcription factor concentration f(t)

Under the linear model, we have

f 0 K Krx
MR IErad)
Standard GP Regression yields the mean and covariance function of the
predicted process as

B
<f>post = KfXK)&l (X - _>

D
KBt Kir — Kex Ko Knr
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Artificial Example: Inferring f(t)
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Artificial Example: Inferring f(t)
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Parameter Estimation for the Linear Model

A likelihood function for the model parameters 6 = {B;, S;, DJ-}J-’V:1 and
GP length scale / is obtained by integrating out the latent function f(t)

o. = [ | TLetslo. 7o | pieain aco
J

Under the GP model, the log marginal likelihood is then given by
1 - 1
logL(0,1) = —§xT (K + 0,2,1) Yy ilog K+ o%1| — glog27r

Maximise to find model parameters.
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p53 (RBF covariance)

Pei Gao

Inferred p53 protein gene TNFRSF20b mRNA gene DDB2 mRNA

B=0.4489
D =0.4487
S =0.40601

3
2 A T
1
-0.5 0 0
0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12
gene p21 MRNA gene BIK mRNA

B=022518
D=08

s=1
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Ranking with ERK Signalling

o Target Ranking for Elk-1.

@ Elk-1 is phosphorylated by ERK from the EGF signalling pathway.
@ Predict concentration of Elk-1 from known targets.

@ Rank other targets of Elk-1.
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Elk-1 (MLP covariance)

Jennifer Withers

Tiansrpton actorconcenuaan aver e g Gene 1 Traning Gene 2
g
B
6| 25
2
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H 15|
H
E o2 1
o 0|
o
D 0o 1 2 3 4 5 6 1 8 0 1 2 3 4 5 & 71 &
ime) e ) ety
g Gene s g Gene ¢ Taiog Gene
2sf R
B o
25| 2
2 15|
18] N
1
oS R, e
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Elk-1 target selection

Fitted model used to rank potential targets of Elk-1

Predicted target gene Predicted non-target gene

4 6 4
time (h) time (h)

Neil D. Lawrence (Tampere) ML Systems Biology



© Cascaded Differential Equations
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Cascaded Differential Equations

Antti Honkela

@ Transcription factor protein also has governing mRNA.
@ This mRNA can be measured.

@ In signalling systems this measurement can be misleading because it is
activated (phosphorylated) transcription factor that counts.

@ In development phosphorylation plays less of a role.
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Drosophila Mesoderm Development

Collaboration with Furlong Lab in EMBL Heidelberg.
e Mesoderm development in Drosophila melanogaster (fruit fly).

@ Mesoderm forms in triplobastic animals (along with ectoderm and
endoderm). Mesoderm develops into muscles, and circulatory system.

@ The transcription factor Twist initiates Drosophila mesoderm
development, resulting in the formation of heart, somatic muscle, and
other cell types.

o Wildtype microarray experiments publicly available.
@ Can we use the cascade model to predict viable targets of Twist?
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Cascaded Differential Equations

Antti Honkela

We take the production rate of active transcription factor to be given by

T _ oy (1) - st (1
dx; (t) _
78— Bt 5if (1) - Dy (1)

The solution for f(t), setting transient terms to zero, is

t)=ocexp(— 5t)/ u)exp (0u)d
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Covariance for Translation/Transcription Model

RBF covariance function for y (t)

f(t) = aexp(—ét)/oty(u)exp(éu)du
x(t) = %+S;exp(—D;t)/otf(u)exp(D,-u)du.

@ Joint distribution

for x1 (t), x2 (t), y(t‘ ‘ ‘ 1
f(t) and y (t). f(t. . .
4

@ Here:
(00D (s[5 ] " ol M
[01] 5|5 ]05[05] a0

() fﬁzlﬂﬂw(ﬂ
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Twist Results

@ Use mRNA of Twist as driving input.

@ For each gene build a cascade model that forces Twist to be the only
TF.

e Compare fit of this model to a baseline (e.g. similar model but
sensitivity zero).
@ Rank according to the likelihood above the baseline.
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Results for Twi using the Cascade model

Inferred twi protein Driving Input

o B N W N O o

-1

FBgn0002526
1
038
delta 0.0768465
sigma 1
06
D 0.0760771
04 $0.0956793
B 0.000847107
02
o
2 4 6 8 10 12 0 02 04 06 08 1

Figure: Model for flybase gene identity FBgn0002526.
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Results for Twi using the Cascade model

x107° Inferred twi protein Driving Input

o B N W N O o

-1 -1

1
038
delta 517.034
sigma 1
06
D 542.062
04 S 266101
B 3.81368¢-06
02
o

0 0.2 0.4 0.6 0.8 1

Figure: Model for flybase gene identity FBgn0003486.
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Results for Twi using the Cascade model

Inferred twi protein Driving Input

o r N W N O o

-1

1
038
delta 0.0543985
sigma 1
06
D 0.0502381
04 $0.0823117
B 0.000447727
02
o

0 0.2 0.4 0.6 0.8 1

Figure: Model for flybase gene identity FBgn0011206.
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Results for Twi using the Cascade model

Inferred twi protein Driving Input

1
038
delta 3.17042e-05
sigma 1
06
D 0.000118374
04 $0.0531884
B 7.20183¢-08
02
o

0 0.2 0.4 0.6 0.8 1

Figure: Model for flybase gene identity FBgn00309055.
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Results for Twi using the Cascade model

Inferred twi protein Driving Input

1
038
delta 0.000381468
sigma 1
06
D 0.000540422
04 S 0.0520367
B 3.83826€-06
02
o

0 0.2 0.4 0.6 0.8 1

Figure: Model for flybase gene identity FBgn0031907.
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Results for Twi using the Cascade model

Inferred twi protein Driving Input

o B N W N O o

-1

FBgn0035257
1
038
delta 0.0200954
sigma 1
06
D 0.0211176
04 $0.0661116
B 0.000204487
02
o

0 0.2 0.4 0.6 0.8 1

Figure: Model for flybase gene identity FBgn0035257.
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Results for Twi using the Cascade model

Inferred twi protein Driving Input
0.3

0.25

0.05

-0.05

1
0.8
delta 11.5089
sigma 1
0.6
D 119.017
04 S1380.22
B 0.00532375
0.2
0

0 0.2 0.4 0.6 0.8 1

Figure: Model for flybase gene identity FBgn0039286.
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Results of Ranking

In—situ validation: twi

—&— Filtered GPDISIM
——*— Normalised GPDISIM
—+— Normalised GPSIM

— < — TSNI (Della Gatta et al.)
— % — Knock-outs

— 8 — Correlation

— — — Random

Percentage enrichment
[=} o
w e

Top N to consider

Figure: Percentage enrichment for top N targets for relevant terms in Drosophila
in situs.
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Results of Ranking

ChlP validation: twi (10 kb)

o
3

o
=

—&— Filtered GPDISIM
——*— Normalised GPDISIM
—+— Normalised GPSIM

— < — TSNI (Della Gatta et al.)
— * — Knock-outs

— 8 — Correlation

o
o

Percentage enrichment
o
ol

03}, < S ]
P B e — T £ % | - — — Random
e SRR
028 %
©
01 1 ’ 2 3
10 10 10

Top N to consider

Figure: Percentage enrichment for top N targets for ChlP-chip confirmed targets.
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@ Cascade models allow genomewide analysis of potential targets given
only expression data.

@ Once a set of potential candidate targets have been identified, they
can be modelled in a more complex manner.

@ We don't have ground truth, but evidence indicates that the approach
can perform as well as knockouts.
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© Non-linear Response Models
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Nonlinear Response Models

Consider the following modification to the model,

dxfo'l_gf) = B+ g (£ (1)) — Dy (1),

where g (+) is a non-linear function. The differential equation can still be
solved,

B; Y pit—y
(0= 5 +5 [ O g (7 () du
J 0
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MAP-Laplace Approximation

Based on Laplace’s method,

p(F1x) =N (F,A™) xexp (‘% (f—f)TA(f‘fD

where f = argmaxp(f | x) and A = —VV logp(f | y) l¢_¢ is the Hessian of
the negative posterior at that point. To obtain f and A, we define the

following function v (f) as:

log p(f|x) oc ¥(f) = log p (x | f) + log p (f)
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MAP-Laplace Approximation

Assigning a GP prior distribution to f(t), it then follows that
1. +.4 1 n
=—= - = K| — = log2
log p (f) 2f K™ f 2Iog| | 5 log2m

where K is the covariance matrix of f(t). Hence,

Vi(f) = Vlog p(x|f) — K1f
VVi(f) = VV log p(x|f) — Kl=-w-K!
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Estimation of ) (f)

Newton's method is applied to find the maximum of (f) as

frev = f — (VVy(F)) "1V (f)
= (W + K1)~} (WFf — V log p(x|f))
In addition, A = —VV4(f) = W + K~ where W is the negative Hessian

matrix. Hence, the Laplace approximation to the posterior is a Gaussian
with mean f and covariance matrix A~las

p(f | x) ~ N, A7Y) = N(F, (W + K1)
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Model Parameter Estimation

The marginal likelihood is useful for estimating the model parameters 6
and covariance parameters /

p(x16.6) = [ p(xif.0)p(Fig)df = [ exp (v (1)) o
Using Taylor expansion of v (f),
" 1 1
log p(x|0, @) = log p <x|f, 0, ¢> — §fTK_1f ~5 log |1 + KW|

The parameters n = {0, ¢} can be then estimated by using

Ologp (xln) _ dlogp(xin) | 0log p (x|n) OF
on = on explicit of on
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Michaelis-Menten Kinetics

Pei Gao

@ The Michaelis-Menten activation model uses the following
non-linearity

. of()
. t)) = ——
§(7(0) ==
where we are using a GP f (t) to model the log of the TF activity.
Inferred p53 protein Inferred p53 protein

4 2

1.5]

1 .

ost )7 NN

_]U 2 4 6 8 10 12 G0 2 4 6 8 10 12
(a) (b)
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Valdiation of Laplace Approximation

4r

% 2 4 6 8 10 12

Figure: Laplace approximation error bars along with samples from the true
posterior distribution.
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SOS Response

o DNA damage may occur as a result of activity of antibiotics.

@ LexA is bound to the genome preventing transcription of the SOS
genes.

@ RecA protein is stimulated by single stranded DNA, inactivates the
LexA repessor.

@ This allows several of the LexA targets to transcribe.

@ The SOS pathway may be essential in antibiotic resistance Cirz et al.
(2005).

@ Aim is to target these proteins to produce drugs to increase efficacy
of antibiotics Lee et al. (2005).
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LexA Experimental Description

e Data from Courcelle et al. (2001)

@ UV irradiation of E. coli. in both wild-type cells and lexAl mutants,
which are unable to induce genes under LexA control.

@ Response measured with two color hybridization to cDNA arrays.
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Their Model

Given measurements of gene expression at N time points (o, t1, ..., tN—1),
the temporal profile of a gene 7, x; (t), that solves the ODE in Eq. 1 can
be approximated by

2
N

1
i+ 1

B; 1
xi(8) = xPet 4 L St 3 (Pt - ePt)
! [

(.
Il
o

= (f(5)+f(y .
where f; = Lz(tﬁl)) on each subinterval
(tj,t;+1),j=0,...,N —2. This is under the simplifying assumption
that f (t) is a piece-wise constant function on each subinterval (t;, tj 4+ 1).
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Khanin et al. (2006) Results Reminder

A
00 02 04 06 08 10 12

TFA

S R —
1 220 % 4 50 60

Time, min

Figure: Fig. 2 from Khanin et al. (2006): Reconstructed activity level of master
repressor LexA, following a UV dose of 40 J/m2.
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Their Results

Gene expression

Gene expression

lexA ruvB
B @
5 -
o
£ .
g
8
°
2
5
S o |
o2 w0 0 o 0w a0 a s e
Time Time
recN umuC
&
: o
8
2 °
2 .
8
o 2 w 4 o e o o m % o s
Time Time

Figure: Fig. 3 from Khanin et al. (2006):

the LexA SIM.
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Repression Model

Pei Gao

@ We can use the same model of repression,

1

§(F(0) =

In the case of repression we have to include the transient term,

B; t
X (t) = aje” it 4 5; +5 /O e DIt gi(f (u))du
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Results for the repressor LexA

Inferred LexA Activity

recN mRNA

Pei Gao

dinl mRNA

2) D=090765
$=36777 § 92
Alpha = -5.7436 N
- i Alpha = 0.050427
0] Gamma = 1.0981 0.8 Gamma = 0.804
5
) 20 40 60 0 20 40 60
ruvB mRNA lexA mRNA umuc mRNA
2.5

1.8

1.6

1.4
8=033778
12 D=0.4716 gig,sgggz
e 0006625 L s=a15%
y Gamma = 098543 Alpha =-0.092467 2 . Alpha = 17179
. Gamma =1.129 )(,"l Gamma = 10556
0.8 0.5 0
0 20 40 60 0 20 40 60 0 20 40 60

Figure: Our results using an MLP kernel. To apear at ECCB08 Gao et al. (2008).
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Use Samples to Represent Posterior

Michalis Titsias

@ Sample in Gaussian processes

p (flx) o< p (x[f) p(F)

o Likelihood relates GP to data through

t
X (t) = aje e Dit 4 =L B —i—S/ e_Df(t_”)gj(f(u))du
D; 0

@ We use control points for fast sampling.
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MCMC for Non Linear Response

The Metropolis-Hastings algorithm
o Initialize f(©

@ Form a Markov chain. Use a proposal distribution Q(f(t+1)|f(¥)) and
accept with the M-H step

, p(x|fEHD)p(FEHD) Q(FID|FTHY)
" (1’ p(x[FO)p(F0) o(f<f+1>|f<f>))
e f can be very high dimensional (hundreds of points)
@ How do we choose the proposal Q(f(t+1)|f(t))?

» Can we use the GP prior p(f) as the proposal?
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Sampling using control points

@ Separate the points in f into two groups:

» few control points f.
» and the large majority of the remaining points f, = f \ fc

@ Sample the control points f. using a proposal g (f((_-t+1)|f£t)>

@ Sample the remaining points f, using the conditional GP prior
(t41))g(t+1)
P (fp Ife >

@ The whole proposal is
Q <f(t+1)“:(t)) —p (ff()t+1)|f‘(:t+l)) g (f‘(:t—i—l)lf((:t))

@ lIts like sampling from the prior p(f) but imposing random walk
behaviour through the control points
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Sampling using control points: Regression-Examples

Sample 121 points using 10 control points

2 ‘ 4
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Sampling using control points: Regression-Examples

Sample 121 points using 10 control points

2 ‘ 4
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Sampling using control points: Regression-Examples

Sample 121 points using 10 control points
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Sampling using control points: Regression-Examples

Sample 121 points using 10 control points

2 ‘ 4
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Sampling using control points: Regression-Examples

Sample 121 points using 10 control points
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Sampling using control points: Regression-Examples

Sample 121 points using 10 control points

2 ‘ 4

155
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Sampling using control points

Few samples drawn during MCMC
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Results on SOS System

@ Again consider the Michaelis-Menten kinetic equation

dg(t) _ o o 1
dt _Bj+5JeXp(f(t))+’7j

— Djx;(t)

@ We have 14 genes (5 kinetic parameters each)

@ Gene expressions are available for T = 6 time slots
e TF (f) is discretized using 121 points

@ MCMC details:

» 6 control points are used (placed in a equally spaced grid)
» Running time was 5 hours for 2 million sampling iterations plus burn in
» Acceptance rate for f after burn in was between 15% — 25%
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Results in E.coli data: Predicted gene expressions

dinF Gene dinl Gene lexA Gene

0 10 20 30 40 50 60 0 10 20 0 40 50 60 0 10 20 30 40 50 60
recN Gene TuvA Gene
35 5
........................ 3
...... »
0 2

-0 1

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 0 40 50 60
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Results in E.coli data: Predicted gene expressions

ruvB Gene

sbmC Gene

SulA Gene

o 10 20 30 40 50

umuC Gene

20 30 40

umuD Gene

30

uvrB Gene

40

50
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Results in E.coli data: Predicted gene expressions

yebG Gene YjiW Gene
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Results in E.coli data: Protein concentration

Inferred protein
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Results in E.coli data: Kinetic parameters

Basal rates Decay rates
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Results in E.coli data: Genes with low sensitivity value

recN Gene umuC Gene uvrB Gene

Sensitivities
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Results in E.coli data: Confidence intervals for the kinetic

parameters

Basal rates Decay rates
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p53 System Again

@ One transcription factor (p53) that acts as an activator. We consider
the Michaelis-Menten kinetic equation

dx;(t) exp(f(t))

dt 7 Texp(f(t) +

— Djx;(t)

@ We have 5 genes

@ Gene expressions are available for T = 7 times and there are 3
replicas of the time series data

e TF (f) is discretized using 121 points
o MCMC details:

» 7 control points are used (placed in a equally spaced grid)
» Running time 4/5 hours for 2 million sampling iterations plus burn in
» Acceptance rate for f after burn in was between 15% — 25%
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Data used by Barenco et al. (2006): Predicted gene

expressions for the 1st replica

DDB2 Gene - first Replica BIK Gene - first Replica TNFRSF10b Gene - first Replica

Clp1/p21 Gene - first Replica
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Data used by Barenco et al. (2006): Protein concentrations

Inferred p53 protein Inferred ps3 protein Inferred ps3 protein

Linear model (Barenco et al. predictions are shown as crosses)

Inferred protein Inferred protein Inferred protein
o o -~
0.6 0.6 K N 25
05 RN 05|
R 2|
0.4f K N 0.4
J . 15)
0.3] [ N, 0.3
i 1
02t el N e 02|
o L T T 0.1 . 0.5
A Tl T >
o 2 2 6 B 10 12 o 2 @ 6 B 10 12 0

Nonlinear (Michaelis-Menten kinetic equation)
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p53 Data Kinetic parameters

Basal rates Decay rates
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Our results (grey) compared with Barenco et al. (2006) (black). Note that

Barenco et al. use a linear model
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@ Discussion and Future Work
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Discussion and Future Work

@ Integration of probabilistic inference with mechanistic models.
@ These results are small simple systems.
@ Ongoing work:

» Scaling up to larger systems

» Applications to other types of system, e.g. non-steady-state
metabolomics, spatial systems etc.

» Improved approximations.

» Stochastic differential equations
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