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Abstract
This report is a brief introduction to variational inference for Bayesian

models from the perspective of the Expectation Maximisation (EM) al-
gorithm [1]. We start with an overview of the EM algorithm from the
perspective of variational inference and then we show how approximate
inference may also be performed. We discuss brie�y when variational in-
ference may be used and �nally we mentione the variational importance
sampler as an alternative approach.

1 Exact Variational Inference
In Bayesian inference we start with a prior distribution, p (θ) over the our
parameters, θ, and a likelihood model, p (X|θ) of some variables X given the
parameters.

We wish to obtain the probability of the data, p (X), which we �nd through
intergrating over θ

p (X) =
∫

p (X|θ) p (θ) ∂θ.

This result is often called the `sum rule' of probability, p (X) is then known
as the marginalised likelihood of the variables X. Consider the logarithm of this
marginalised likelihood1

log p (X) = log
∫

p (X|θ) p (θ) ∂θ.

Now we introduce an unde�ned probability distribution q (θ).

log p (X) = log
∫

q (θ)
p (X|θ) p (θ)

q (θ)
∂θ.

Jensen's inequality states that log
(∫

f (x) dx
) ≥ ∫

log (f (x)) dx, where f (x) is
some positive function of x. Here, we implement a modi�ed form of Jensen's
inequality, to obtain the following lower bound on the log likelihood

1Note that the logarithm is a monotonic function therefore log (y1) > log (y2)if and only
if y1 > y2. We are often interested in comparing likelihoods of variables to see which is more
likely than the other. Taking logarithms preserves this ordering.
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log p (X) ≥
∫

q (θ) log
p (X|θ) p (θ)

q (θ)
∂θ (1)

≥
∫

q (θ) log p (X|θ) p (θ) ∂θ

−
∫

q (θ) log q (θ) ∂θ (2)

The quality of the bound is dependent on the functional form of q (θ) as we will
now demonstrate.

1.1 The quality of the bound as a function of q (θk)

The product rule of probability gives us

p (X, θ) = p (X|θ) p (θ)

and
p (X,θ) = p (θ|X) p (X)

which in turn means2

p (X|θ) p (θ) = p (θ|X) p (X) (3)

We now substitue (3) into (1) to obtain

log p (X) ≥
∫

q (θ) log
p (θ|X) p (X)

q (θ)
∂θ (4)

≥
∫

q (θ) log p (X) ∂θ

+
∫

q (θ) log p (θ|X) ∂θ

−
∫

q (θ) log q (θ) ∂θ (5)

Now we note that the �rst term in (5) is an expectation of log p (X) under
the distribution q (θ) and is therefore simply equal to log p (X). Therefore we
rewrite (5)

log p (X) ≥ log p (X) +
∫

q (θ) log p (θ|X) ∂θ

−
∫

q (θ) log q (θ) ∂θ

2This is recognised as the foundation of the proof of Bayes's theorem.
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which means that the di�erence between the lower bound obtained through our
modi�ed form of Jensen's inequality and the true likelihood is simply

KL (q (θ) ||p (θ|X)) =
∫

q (θ) log q (θ) ∂θ

−
∫

q (θ) log p (θ|X) ∂θ

which is known as the Kullback-Leibler (KL) divergence between the two dis-
tributions [5]. This divergence is always positive unless q (θ) = p (θ|X) when it
is zero. When the divergence is equal to zero, the lower bound on the likelihood
above becomes an equality. In other words if we take q (θ) = p (θ|X) then our
bound becomes an equality. This process is known as a free form optimisation
of the bound with respect to the distribution q (θ).

2 Approximate Variational Inference
In the outline above, we allowed the distribution q (θ) to have any functional
form. We were, thereby, able to recover the marginalised likelihood. The algo-
rithm outlined above is the expectation step of the Expectation-Maximisation
algorithm3 [1]. In practice, determining p (θ|X) may be a problem, more pre-
cisely, if we are unable to obtain the integral in (1) then, because the posterior
distribution is given by

p (θ|X) =
p (X, θ)
p (X)

,

we will be unable to compute the posterior distribuiton.
In these circumstances, to make progress, we must place further constraints

on the functional form of the distribution. In variational inference [4], the
option we consider is to assume that the `q-distribution' factorises across disjoint
subsets of the parameters:

q (θ) = q (θ1) q (θ2) ,

where θ1 and θ2 are disjoint sub-sets of the full parameter set θ. Substituting
these distributions into (5) we recover

log p (X) ≥
∫

q (θ1) q (θ2) log
p (X|θ1,θ2) p (θ1, θ2)

q (θ1) q (θ2)
∂θ1∂θ2

≥
∫

q (θ1) q (θ2) log p (X|θ1, θ2) p (θ1, θ2) ∂θ1∂θ2

−
∫

q (θ1) q (θ2) log q (θ1) q (θ2) ∂θ1∂θ2

Consider the dependence on one of these factors q (θ1)
3The maximisation step, which is not of interest here, consists of maximising (1) with

respect to a further set of parameters which we are not considering.
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log p (X) ≥
∫

q (θ1) q (θ2) log
p (X|θ1, θ2) p (θ1, θ2)

q (θ1) q (θ2)
∂θ1∂θ2

≥
∫

q (θ1)
∫

q (θ2) log p (X|θ1, θ2) p (θ1,θ2) ∂θ1∂θ2

−
∫

q (θ1) log q (θ1) ∂θ1 + const

≥
∫

q (θ1) log
[
exp 〈log p (X|θ1, θ2) p (θ1, θ2)〉q(θ2)

]
∂θ1∂θ2

−
∫

q (θ1) log q (θ1) ∂θ1 + const

≥ const −KL
(

q (θ1) ‖
exp 〈log p (X|θ1, θ2) p (θ1, θ2)〉q(θ2)

Z

)
.

where Z =
∫

exp 〈log p (X|θ1,θ2) p (θ1, θ2)〉q(θ2) ∂θ1 and const is a term con-
stant in θ2 and we have introduced the notation 〈·〉p(·) to denote an expectation
under the distribution p (·). This KL-divergence is minimised when

q (θ1) ∝ exp 〈log p (X|θ1, θ2) p (θ1, θ2)〉q(θ2) ,

where the constant of proportionality is given by Z.
A similar equation may be derived for q (θ2). Indeed, in general, for J

subsets of the parameters θj , if we assume that the posterior approximation
factorises

q (θ) =
J∏

j=1

q (θj)

we may obtain through a similar analysis to the above

q (θk) ∝ exp 〈log p (X|θ) p (θ)〉∏
j 6=k

q(θj) . (6)

3 When May we Perform Variational Inference?
We are still somewhat restricted in our implementation of variational inference
in that to compute the distribution over θk speci�ed in (6) we are required to
obtain the constant of proportionality which is given by

Z =
∫

exp 〈log p (X|θ) p (θ)〉∏
j 6=k

q(θj) ∂θk. (7)

In [3] Ghahramani and Beal explore a class of distributions for which this integral
will be soluble known as the conjugate-exponential family.
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3.1 What do we do if we cannot compute the integral
In the case that the integral is not soluble, one approach is to seek an alternative
functional form for q (θk), q′ (θk) for which the integral will be tractable and
attempt to minimise the following KL-divergence

KL (q′ (θ) ||q (θ)) =
∫

q′ (θ) log q′ (θ) ∂θ

−
∫

q′ (θ) log q (θ) ∂θ

however it is not obvious what this functional form should be, nor is it clear
when this step may be performed. The alternative we propose is, whilst we may
not be able to compute the integral in Z we may be able to obtain samples from
(6) using Monte Carlo techniques and estimate expectations of interest using
the sampler. One example of this is the variational importance sampler.

4 The Variational Importance Sampler
The variational importance sampler is a general solution to handling an in-
tractability in (6). First, note from (6) that each distribution q (θk) is depen-
dent on expectations under the other factors of our posterior approximations.
In other words, if we can obtain these expectations, or estimates of these ex-
pectations, for the distribution which is intractable we may still estimate the
other distributions. As its name suggests, the variational importance sampler
obtains these estimates of the expectations under the intractable distributions
via importance sampling4.

Importance sampling has been mentioned in the context of variational infer-
ence by other authors, in particular Ghahramani and Beal [2], but as a method
of estimating the true marginalised log likelihood, not as a method of handling
intractable variational approximations.
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