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Abstract. Gene expression measurements quantify the level of mRNA pro-
duced from each gene. Two principal methods exist for producing slides for
extracting these levels: photolithography and spotted arrays. One difficulty
with the spotted array format is determining the size and location of the spots
on the array. In this paper we present a Bayesian approach to processing im-
ages produced by these arrays that seeks posterior distributions over the size
and positions of the spots. This enables us to estimate expression ratiasd
their variances. Exact inference for the model we specify is intractable; we
develop an approximate inference technigue which combines importance sam-
pling with variational inference. Our technique has already been shown to
be more consistent than both manual processing and another automated tech-
nique [6]. Here we present large-scale results for twenty-four microarray slides
each representing 5760 genes and show the dramatic effects of incorporating
variance in our downstream analysis. Software based on this algorithm is avail-
able for academic use.

INTRODUCTION

Microarrays allow the simultaneous measurement of thousands of gene expression
levels [1]. In cDNA microarrays genetic material representing the sequences of
individual genes are ‘spotted’ on a slide. mMRNA from two biological samples is then
‘reverse transcripted’ into DNA which is ‘tagged’ with different fluorescent dyes.
This DNA is then hybridised to the slide’s spots and the slide is scanned to give two
images, one for each biological sample, each of which varies in intensity according
to the quantity of two dyes present (Figure 1). The intensity of each dye present
at each spot is interpreted as indicating the corresponding gene’s expression level



in the biological sample, or, more precisely, the ratios of the dyes are interpreted as
indicating the ratio of the gene expression level. The two images associated with the
different samples are normally visualised together in colour with one sample being
placed on the red channel of the resulting image and the other sample placed on the
green channel.

Figure 1: Left and Right Two channels with intensities scaled by a factor of six from a
microarray shown as ‘negatives’ for clearer printihgft The ‘red’ sample representing the
response to the mutant's samplRight The ‘green’ channel representing the response to
the wild-type sample. The images show one sub-grid of the slide which contains a total of
forty-eight sub-grids. The position and shape of each of the spots must be identified. Note:
(i) The higher background level for the red channel, (ii) the dust spot in the upper right of
the green channel and (iii) a faint ‘tide mark’ on the right hand side of the green channel.
(iv) Spots missing from the grid are either: genes that are not present in the sample or points
where the cDNA laid down by the spotter has been damaged.

Extracting the Intensities. To determine the gene expression level some assess-
ment of the dye intensity must be made at each spot. One common approach is
to specify thez-radius andy-radius of an oval which separates each spot from the
surrounding background. Pixels within the oval are then considered to represent the
samples’ gene expression levels whilst those outside the oval are termed as ‘back-
ground’. ScanAlyzgis one widely utilised software package which allows the user

to specify the parameters of the ovals and extracts the gene expression ratios given
these ovals. Whilst an initial rough placement of grids of the ovals is often available,
or simple to lay out, the process of refining the ovals’ positions on an individual ba-
sis is repetitive and labourious. Here we present a Bayesian algorithm which not
only refines these positions automatically, but also provides a variance on quantities
of interest which may be used in further downstream analysis.

1ScanAlyze is available free for academic use and downloadableHtgmirana.lbl.gov/
EisenSoftware.htm



Noise in the MeasurementsThe gene expression level extracted by the software is
subject to ‘noise’ arising from several different sources. Techniques exist which aim
to compensate for some of the sources of this noise, these include considering ratios
of the intensities and normalising the image channels [11]. However, in practice,
the only way forward is repeating experiments in an effort to quantify the noise. In
this paper we are concerned with noise caused by misplacement of the oval. There
are two important causes of this noise: firstly, manual processing of images con-
taining thousands of spots leads to human error in placement of the ovals due to the
tedious and lengtHynature of the task. Secondly, even if ample time were given

to a researcher, it is not necessarily clear which portions of the image should be as-
signed to the background and which we should assign to the foregriceiritiere is
uncertainty in the placement. The presence of uncertainty leads us to consider pro-
cessing of the images in a Bayesian manner. It has already been shown how with a
Bayesian approach more consistent results can be obtained [6], here we give details
of the mathematical algorithm and demonstrate how accounting for uncertainty in
the measurements modifies the downstream analysis.

THE BAYESIAN APPROACH

The Bayesian approach involves encapsulating the information we initially have
about theith oval's parameterd);, in a prior distributiorp (8;). We then construct
a model of the observed image, |, given tile spotp (I|6;) which is known as
the likelihood. Bayesian inference involves utilising Bayes’ rule to determine the

posterior distribution,
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which represents our belief about the oval’'s parameters given the image. The dif-
ficulty in determining the posterior normally lies in evaluation of the constant of
proportionality
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The Prior. A common choice of prior distribution is that of the Gaussian distribu-
tion, a more general distribution however is that of the multi-variate Stugent-
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whered is the number of parameters in the parameter venigre R?*1! is a vector
of means,S € R¥*? is a matrix which is related to the scale of the parameters
andv is the degrees of freedom parameter. The Stud&ezomes Gaussian with

2For our data accurate placement of the spots by human took about 4-6 hours for each slide. Our
algorithm, written in a combination of C++ and MATLAB, runs unattended for each slide in about half
an hour on a 1.2GHz Pentium Il machine.



meanm,; and covarianc& asv — oo, otherwise it represents a more heavy tailed
distribution. As a further refinement we place a spherical Gaussian prior over the
mean vector of the Studen-
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which is parameterised by a megn and a precision parametgr One reason for
the popularity of a Gaussian prior is that if an appropriate likelihood function is
selected the integral in (2) will be tractable. It is more difficult to develop an appro-
priate likelihood for the Studernitdistribution. However, in this application, as we
shall see in the next section, the likelihood function renders the integral intractable
for both choices of prior. Consequently we develop, a novel approximating tech-
nigue which alleviates the requirement of solving that integral directly. This tech-
nigue is very general and has already been applied to visual tracking in [9].

The Likelihood For the definition of the likelihood, consider that the oval defines

an area as being from the spot, or foreground, and an area as being from the back-
ground. Since there are many spots, and we do not wish our specification of the
background to include all the other spots, we constrain the area of the background
to be a box around the oval of fixed width and heighy,... Thus each oval allocates

the pixels to a set which belong to the backgroufige, and a set which belongs

to the foregroundZ;.re. For simplicity, we utilise a likelihood which assumes inde-
pendence between the pixels,

p16:) = 11 p@IF) I] »lB).
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wherep (I;|F') is the distribution of an individual pixel's red and green channels
given that it's from the foreground ang(I,|B) is the distribution of a pixel's
channels given that it's from the background. Such likelihood models are com-
monly utilised in computer vision (se=g. [3]). We further simplified the likeli-

hood by assuming independence between the red and green chandgls)) =
p(rj|F)p(g;|F) wherer; andg; are, respectively the intensities of the red and
green channels at pixgl The background model was treated similarly. We built
histograms, based on the initial rough grid localisation, which represented the inten-
sities of the foreground and background pixels for both the red and green channels.
Note that, despite our simplifying assumptions, the likelihood function we have
defined is highly non-linear in the parameté@s rendering the integral in (2) in-
tractable. Furthermore, derivatives of the likelihood with respect to the parameters
6; may not be computed analytically, precluding techniques such as the Laplace
approximation.

APPROXIMATE INFERENCE

Substituting the likelihood and prior distribution specified above into (2) renders
evaluation of the marginal likelihood intractable. Instead we must look to approxi-



mations to make progress.

Variational Inference In variational inference [5] we choose to lower bound the
log-likelihood by seeking a constrained form of the posterior distribution, specifi-
cally we assume it factorises across sub-sets of the state variables. Variational in-
ference is facilitated if our distributions belong to the conjugate exponential family
(seee.q.[2]), so our first step is to decompose the Studentior distribution into a
multivariate Gaussian,

p(0;/m;, P;) = N (6;/m;, P; 1),
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whose precision matrixR;, is sampled from a Wishart distribution
p(P;|S,v) =W (P;|S,v),

where
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This hierarchical formalism for our prior leaves us with three sets of variahigs,

P; and@, , whose prior distributions all belong to the conjugate exponential family.
In variational inference, we seek an approximation to the posterior which factorises
across these variables

q(m;, P;,0;) = q(m;)q(P;)q(0;).

Minimising the variational lower bound on the log likelihood with respect to each
factor of this distribution [10] gives

q (m;) o< exp (Inp (6;|m;, Pi) p (mi|p;, B)) p,yq0,) -

where(-)m,ﬁ)_is an expectation under the distributipf-). Substituting in the rele-
[

vant probability distributions gives
q(m;) =N (my[m;, ;) ,
where
m; = % [(Py) (6;) + pmy] 3)
Sio= [(P)+p107 4)

and moments of interest may be found as

(m;) =m;, (mym]) = ¥; + m;m,. (5)



A similar process leads to

q (Py) oc exp (Inp (6;|my, Pi) p (Py[v, S))

q(m;)q(6;) °
giving
q(Py) =W (PZ|S27 ﬁ)
where
S = [87+(00]) — (m) (07— (0 (m)"+ (mm)T] . (8)
v = v+1 (7)

and a moment of interest may be found as
(P;) =vS; . (8)
Finally we may obtain

q(0:) < exp (Inp (116;) p (6i[mi, Pi)) p.yg(m,) ©)

unfortunately even with the variational approximation we may not compute the con-
stant of proportionality associated with this distribution. We therefore turn to sam-
pling methods to handle this distribution.

Variational Importance Sampler The update equations for the posterior distribu-
tions are dependent on the distribution in (9). Being unable to resolve them directly
we turn to sampling methods for estimating them. A range of sampling methods are
applicable, for simplicity we focus on importance sampling @eg[7]). We may
re-write (9) as

1(6) = 5w (10N (0] (ma), (P))

Expectations under this distribution may now be estimated by sampling vééfbrs
from
R(6:) =N (6:] (my), (P) 1)

the proposal distribution. The moments required for the previous section may then
be estimated as

S
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where the values
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are known as the ‘importance weights’. A common problem with importance sam-
pling is that small fraction of the importance weights dominate the sums in (10) and
(11). This occurs when there is a large mis-match between the proposal distribution,
R (6;) and the distribution of interegt(6;). The variational importance sampler al-
leviates this problem through an adaptive proposal distribufignyhich responds

to the observed data. lterating our algorithm improves the match betiR¢ep)

andq (0;). The quality of the samples obtained is often summarised by the effective

number of samples,
1
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Implementation Variational algorithms are often sensitive the order in which pa-
rameter updates occur. For this reason in Algorithm 1 we sketch out the order of
the updates we used. These were found to be effective across a range of microarray
slides. The algorithm, in common with most variational approaches, is sensitive to
initialisations of the parameters. For our experiments we initialised the required pa-
rameters ag = .2, S = I, v = 4 andX; = 3~ 'I. The expectations of the precision
matrix and the Studerits mean were initialised a&;) = (v + 1) [S™' + 37 1]
and(m;) = u,. The vector, was taken from rough grid layout parameters associ-
ated with the slide. The number of samples was s&t-at200. Whilst convergence
can be monitored for portions of the variational update, we wished to avoid the
associated computational overload and thus restricted ourselves to the simple con-
vergence criteria shown in Algorithm 1. Finally, for our experiments we set the
maximum number of iterations d&s = 20.
Algorithm 1 Variational importance sampler for Microarray images.
Require: A number of sample§, a number of iteration&’, a variance of the mean,
(3, a scale matrixS, a degrees of freedom parametgrand an an initial estimate
of m;’s posterior covariancg;.
for each spot;, in imagedo
repeat
Obtain rough size and location of spot and placgjn
SampleS parameter vectorﬁ,g“‘), fromN (0] (m;), (P;)).
Evaluate the importance weights for each samplg according to (12) and
computeSeg.
Estimate(d;) and(8,6; ) using egns (10) and (11).
for K iterationsdo
Updatem; and(m,) followed by (m;m/) according to eqns (3) and (5).
UpdateS; andz; according to eqns (6) and (7)
Update(P;)andX; according to the egns (8) and (4).
end for
until Serr > 2.
end for

Seff =




RESULTS

We considered twenty-four bespoke manufactured cDNA microarray slides from
experiments omphakiamice. The experiments involve a comparison of eye tissue
extracted from wild-type and aphakia mice embryos for the presence or absence
of 5,760 genes at three time points (10.5, 11.5 and 12.5 days gestation) with eight
slides associated with each time point. For each getige measurement of interest

is thelog, ratio between the red;;, and greeng;, channels;y; = log, 2t each
channel being associated with one of the two different biological sarﬁples. Note
that this measure is extremely sensitive when the signal intensity, defingd-as

r; - gi, i low. Itis of biological interest to examine genes for which the magnitude
of v, is ‘high’ (normally above 1) as these genes are being expressed differently
in the two samples and are therefore associated with the aphakia mutation. The
Bayesian approach we have proposed allows us to compute estima{tg%gji)

and its varianceg? = <Vi2>q(91-) — <%>2(9i), using the importance weights that we
determine. In Figure 2 a small portion of one of these images, chosen for the variety
of spots types displayed, is shown together with the rough grid placement and the
last set of samples from the proposal distribution (the importance weights associated
with these samples are not visualised). Each gene at each time point is associated
with a maximum of sixteen values for;, as each of the eight slides contains the
genes twicd It is common, due to experimental variations, for the values to be
missing in some slides. We are interested in an estimate of the actyalaig

of the expression Ievelg/,ft), at each time point, = 10.5, 11.5, 12.5. In standard
approaches this may be estimated as the mean of aj} tredues for each time-step.

Weighting by Variance. Our approach, as well as giving more consistent results
than other automated approaches [6], allows us to weight the expectations by their
variance to modify our estimate Eyft). This is achieved through a weighted mean
which downweights observations with high.

To illustrate the effect of allowing for the variance we show, in Figure 3, plots
of the temporal differences between the Jogtios. We computeeﬁ” with and
without considering variances. The plots are shown for 125 of the 5760 genes that
were selected as being of interest for further biological investigation [8]. Inclusion
of the variance has two important effects: firstly, we have been able to draw ellipses
around the genes’ positions representing one standard deviation of error. Secondly it
is apparent that, when computing the weighted mean of the ratio, many of the genes
make quite large movements on the plot. These movements are mostly diagonal or
along they-axis. They correspond to changes in &j@ values fort = 11.5 and
12.5. This reflects large uncertainty for these measurements. This uncertainty arises
as many genes of interest will be switched off in the mutant strain for the latter time
points. Genes which are switched off have low intensjtywhich generally leads to
greater uncertainty and is in turn reflected in high&rA larger range of values for
o? leads to a greater effect from using a weighted mean. The biological findings of

3In our slides the replicates are adjacent to each other, thus neighbouring dots have similar intensities
in the images.



these experiments are presented in [8], details of the gene selection and hierarchical
clustering will be made available http://www.dcs.shef.ac.uk/ml/
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Figure 2: Left Greyscale of one of the two channels of the microarray image, dashed lines
superimposed on the image which represent the parameters from the ‘grid’. The dashed
circles represent the mean parameters of the ovals for eachuspRight Samples from the
proposal distribution? (8;). These samples have associated importance weights which are
used to compute expectations of interest. Spot positions without samples have been detected
as empty.
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Figure 3: Plots ofy' "> —5{1%) on thez-axis andy!'*> —5{'**) on they-axis. Top Left:
values ofy; calculated without taking account of uncertainti@sp Right 7; calculated with
taking account of uncertaintieBottom Left Arrows indicating the direction of the the largest
15 moves. Movements on theaxis are associated with changesyii®>*’, movements on
thez-axis are associated with changegth°> and diagonal movements are associated with

~{11-%) Bottom Right Detail of plot from top right.

CONCLUSIONS

We have presented a Bayesian approach to microarray image processing which com-
bines variational and sampling techniques. The importance sampler was used to fi-



nesse computational intractabilities induced by the likelihood. Variational inference
enabled us to utilise a data-dependent proposal distribution for the importance sam-
pler. Importance sampling on its own would have lead to a low effective number of
samples, variational inference on its own is intractable. The changes we saw through
incorporating the uncertainty reflected the fact that intensity for many genes of in-
terest was low fot = 11.5 and12.5. We are currently looking into propagating
the uncertainty further through the downstream analysis, focussing on techniques
which are popular in the biological community (such hierarchical clustering).
Software which implements our approach is downloadable friapy//www.
dcs.shef.ac.uk/~neil/VIS

AcknowledgementsPR is supported by a fellowship from the Lister Institute of
Preventative Medicine and SS is a Fight for Sight research fellow.

References

[1] M. B. Eisenand P. O. Brown, “DNA Arrays for Analysis of Gene Expressidgthods
in Enzymology, vol. 303, 1999.

[2] Z. Ghahramani and M. J. Beal, “Graphical Models and Variational Methods,” in M. Op-
per and D. Saad (edsAdvanced Mean Field Methods — Theory and PracticeMIT
Press, 2001.

[3] M.Isard and J. MacCormick, “BraMBLe: A Bayesian Multiple-Blob Tracker,Aroc.
8th Int. Conf. Computer Vision, July 2001.

[4] M. I. Jordan (ed.)Learning in Graphical Models, vol. 89 of Series D: Behavioural
and Social ScienceDordrecht, The Netherlands: Kluwer, 1998.

[5] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola and L. K. Saul, “An Introduction to Varia-
tional Methods for Graphical Models,” in Jordan [4], pp. 105-162.

[6] N. D. Lawrence, M. Milo, M. Niranjan, P. Rashbass and S. Soullier, “Reducing the
Variability in cDNA Microarray Image Processing by Bayesian Inference,” Submitted
to Bioinformatics

[7] D.J. C. MacKay, “Introduction to Monte Carlo Methods,” in Jordan [4], pp. 175—-204.

[8] S. Soullier, M. Milo, J. Moss, N. D. Lawrence, D. Williams, L. Smith, V. van Heynin-
gen, T. Freeman, A. Greenfield, M. Niranjan and P. Rashbass, “The Role of Pitx3 in
Mouse Eye Development Dissected using Microarray Analysis,” .

[9] J. Vermaak, N. Lawrence and P. Pérez, “Variational Inference for Visual Tracking,” in
Computer Vision and Pattern Recognition IEEE Computer Society Press, 2003, To
appear.

[10] S. Waterhouse, D. J. C. MacKay and T. Robinson, “Bayesian Methods for Mixtures of
Experts,” in D. S. Touretzky, M. C. Mozer and M. E. Hasselmo (edsdyances in
Neural Information Processing SystemsCambridge, MA: MIT Press, 1996, vol. 8,
pp. 351-357.

[11] Y. H. Yang, M. J. Buckley, S. Dudoit and T. P. Speed, “Comparison of meth-
ods for image analysis on cDNA microarray data,” Techn. repdgpart-
ment of Statistics, University of California, Berkeley, 2000, Available from
http://www.stat.Berkeley.edu/ ~terry



