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Non-linear Response Models
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Talk Outline

Models of Transcriptional Regulation

Gaussian Processes

Inference for Linear Activation

@ Cascaded Differential Equations
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ODE Model of Activation

@ Linear Activation Model (Barenco et al., 2006, Genome Biology)

dx; (t
B g+ 560)- Dy (0)
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ODE Model of Activation

@ Linear Activation Model (Barenco et al., 2006, Genome Biology)

dx; (t
% = Bj + 5f (t) — Djx; (1)

@ x(t) — concentration of gene j's mRNA
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ODE Model of Activation

@ Linear Activation Model (Barenco et al., 2006, Genome Biology)
dx; (t)
— = B Sf ()= Dx(y)

xj(t) — concentration of gene j's mRNA

f(t) — concentration of active transcription factor

o
o
@ Model parameters: baseline B;, sensitivity S; and decay D;
@ Application: identifying co-regulated genes (targets)

°

Problem: how do we fit the model when f(t) is not observed?
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Outline

© Gaussian Process Inference for Linear Activation
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Gaussian Distribution

Zero mean Gaussian distribution

@ A multi-variate Gaussian distribution is defined by a mean and a
covariance matrix.

ot () KT ()
O p( 2 )

@ We will consider the special case where the mean is zero,

1 fTK-1f
N (f0,K) = ——x— exp (— ) :
(27)2 |K|>2 2
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Sampling a Function

Multi-variate Gaussians

@ We will consider a Gaussian with a particular structure of covariance
matrix.

@ Generate a single sample from this 25 dimensional Gaussian
distribution, f =[fi, f>... fs].

@ We will plot these points against their index.
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Gaussian Distribution Sample

demGPSample
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Figure: (a) 25 instantiations of a function, f,, (b) colormap of covariance matrix.
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Covariance Function

The covariance matrix

@ Covariance matrix shows correlation between points f,, and f, if nis
near to m.
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Covariance Function

The covariance matrix

@ Covariance matrix shows correlation between points f,, and f, if nis
near to m.
@ Less correlation if n is distant from m.

@ Our ordering of points means that the function appears smooth.
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Covariance Function

The covariance matrix
@ Covariance matrix shows correlation between points f,, and f, if nis
near to m.
@ Less correlation if n is distant from m.
@ Our ordering of points means that the function appears smooth.

@ Let's focus on the joint distribution of two points form the 25.
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Prediction of f, from f;

demGPCov2D([1 2])
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Figure: Covariance for [ :_1 ] is Kip = [ 1 0.966 ]
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Prediction of f, from f;

demGPCov2D([1 2])
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Prediction of f5 from £,

demGPCov2D([1 5])

Figure: Covariance for [ :_1 ] is Kis = [ 1 0.574 ]
5
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Prediction of f5 from £,

demGPCov2D([1 5])
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Figure: Covariance for [ :_1 ] is Kis = [ 1 0.574 ]
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Prediction of f5 from £,

demGPCov2D([1 5])
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Figure: Covariance for [ f ] is Kis = { 0574 1

Neil D. Lawrence (Warwick LICSB) ML Systems Biology



Covariance Functions

Where did this covariance matrix come from?

RBF Kernel Function

2
|t = tl]

k (t, t’) = aexp o

@ Covariance matrix is built
using the inputs to the
function t.

@ For the example above it

was based on Euclidean
distance.

@ The covariance function is
also know as a kernel.
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Covariance Samples

demCovFuncSample

o

Figure: RBF kernel with / = 10_%, a=1
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with /=1, a =1
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with / =0.3, a =4
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Gaussian Process Regression

demRegression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?
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Linear Activation Model

Recall the linear model

dx; (1)

ar = Bj + ij(l') — D_,'XJ' (t) .

This differential equation can be solved for x; (t) as
B C Di(t—u)
xj(t)y=—=+S5; | e ™ f(u)du .
D; 0
Note: This is a linear operation on f (t).

If f(t) is a zero mean Gaussian process then x; (t) is also a Gaussian

i B;
process with mean D, -
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Covariance for Transcription Model

RBF covariance function for f (t)

% (t) = 2 4 S exp (—Dyt) /Ot f (u) exp (Diu) du.

2 %\ Bl
\\’I

1) m(t) 2 (t)

@ Joint distribution
for x1 (t), x2 (t)
and f (t).
> Here:
(D[S D] 5 |
| 55 ]05]05]

Se s bt
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Joint Sampling of x (t) and f (t) from Covariance

gpsimTest
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Figure: Left: joint samples from the transcription covariance, blue: f (t), cyan:
x1 (t) and red: xa (t). Right: numerical solution for f (t) of the differential
equation from xy (t) and x; (t) (blue and cyan). True f (t) included for
comparison.
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Figure: Left: joint samples from the transcription covariance, blue: f (t), cyan:
x1 (t) and red: xa (t). Right: numerical solution for f (t) of the differential
equation from xy (t) and x; (t) (blue and cyan). True f (t) included for
comparison.
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Artificial Example: Inferring f(t)
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Artificial Example: Inferring f(t)
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Artificial Example: Inferring f(t)
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p53 (RBF covariance)

Pei Gao

Inferred p53 protein 4 gene TNFRSF20b mRNA gene DDB2 mRNA
B =0.4489
D =0.4487
3 5=0.40601
4 A B O
1
_0“’0 2 4 6 8 10 12 G0 2 4 6 8 10 12 0O 2 4 6 8 10 12
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Ranking with ERK Signalling

o Target Ranking for Elk-1.

@ Elk-1 is phosphorylated by ERK from the EGF signalling pathway.
@ Predict concentration of Elk-1 from known targets.

@ Rank other targets of Elk-1.
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Elk-1 (MLP covariance)

Jennifer Withers
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Elk-1 target selection

Fitted model used to rank potential targets of Elk-1

Predicted target gene Predicted non-target gene

4 6 4
time (h) time (h)
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© Cascaded Differential Equations
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Cascaded Differential Equations

Antti Honkela

@ Transcription factor protein also has governing mRNA.
@ This mRNA can be measured.

@ In signalling systems this measurement can be misleading because it is
activated (phosphorylated) transcription factor that counts.

@ In development phosphorylation plays less of a role.
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Covariance for Translation/Transcription Model

RBF covariance function for y (t)

f(t) = aexp(—ét)/oty(u)exp(éu)du

) t
x(t) = %—i—siexp(—D;t)/o f (u) exp (Diu) du.

@ Joint distribution
for x1 (t), x2 (t), y(t‘ ‘ ‘ 1
f(t) and y (t).

@ Here: f(t. . . i
(0 [0 ] 0[5 ] "l @ |

(015 [5]os5]o5] ==

() f@xlﬁxz(t)
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Results for Mef2 using the Cascade

Driving Input mMRNA Gene Rya-r44F mRNA

Inferred Mef2 Protein Gene ttk MRNA
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01 4 6 8 10 12 13 4 6 8 10 12
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Outline

@ Discussion and Future Work

Neil D. Lawrence (Warwick LICSB) ML Systems Biology



Discussion and Future Work

@ Integration of probabilistic inference with mechanistic models.
@ These results are small simple systems (we skipped non-linear).
@ Ongoing work:

» Scaling up to larger systems

» Applications to other types of system, e.g. non-steady-state
metabolomics, spatial systems etc.

» Improved approximations.

» Stochastic differential equations

Neil D. Lawrence (Warwick LICSB) ML Systems Biology



o
Qo
o
Qo
© Acknowledgements

Neil D. Lawrence (Warwick LICSB) ML Systems Biology



Acknowledgements

@ Investigators: Neil Lawrence and Magnus Rattray

@ Researchers: Peo Gao, Antti Honkela, Michalis Titsias and Jennifer
Withers

@ Charles Girardot and Eileen Furlong of EMBL in Heidelberg
(mesoderm development in D. Melanogaster).

@ Martino Barenco and Mike Hubank at the Institute of Child Health in
UCL (p53 pathway).

Funded by the BBSRC award “Improved Processing of microarray data using
probabilistic models” and EPSRC award “Gaussian Processes for Systems Identification

with applications in Systems Biology"”

Neil D. Lawrence (Warwick LICSB) ML Systems Biology



References |

M. Barenco, D. Tomescu, D. Brewer, R. Callard, J. Stark, and M. Hubank. Ranked prediction of p53 targets using hidden
variable dynamic modeling. Genome Biology, 7(3):R25, 2006. [PDF].

Neil D. Lawrence (Warwick LICSB) ML Systems Biology


http://genomebiology.com/content/pdf/gb-2006-7-3-r25.pdf

	Introduction
	ODE Model of Activation 

	Gaussian Process Inference for Linear Activation
	Distributions over Functions
	Samples from a Gaussian Distribution
	Covariance functions
	Learning Kernel Parameters
	Linear Activation Model
	Artificial Example

	Cascaded Differential Equations
	Discussion and Future Work
	Acknowledgements
	References

