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ODE Model of Activation

Linear Activation Model (Barenco et al., 2006, Genome Biology)

dxj (t)

dt
= Bj + Sj f (t)− Djxj (t)

xj(t) – concentration of gene j ’s mRNA

f (t) – concentration of active transcription factor

Model parameters: baseline Bj , sensitivity Sj and decay Dj

Application: identifying co-regulated genes (targets)

Problem: how do we fit the model when f (t) is not observed?
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Gaussian Distribution

Zero mean Gaussian distribution

A multi-variate Gaussian distribution is defined by a mean and a
covariance matrix.

N (f|µ,K) =
1

(2π)
N
2 |K|

1
2

exp

(
−(f − µ)T K−1 (f − µ)

2

)
.

We will consider the special case where the mean is zero,

N (f|0,K) =
1

(2π)
N
2 |K|

1
2

exp

(
− fTK−1f

2

)
.
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Sampling a Function

Multi-variate Gaussians

We will consider a Gaussian with a particular structure of covariance
matrix.

Generate a single sample from this 25 dimensional Gaussian
distribution, f = [f1, f2 . . . f25].

We will plot these points against their index.
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Gaussian Distribution Sample

demGPSample
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Figure: (a) 25 instantiations of a function, fn, (b) colormap of covariance matrix.
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Covariance Function

The covariance matrix

Covariance matrix shows correlation between points fm and fn if n is
near to m.

Less correlation if n is distant from m.

Our ordering of points means that the function appears smooth.

Let’s focus on the joint distribution of two points form the 25.
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Prediction of f2 from f1

demGPCov2D([1 2])
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Prediction of f5 from f1

demGPCov2D([1 5])
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Covariance Functions
Where did this covariance matrix come from?

RBF Kernel Function

k
(
t, t ′
)

= α exp

(
−||t − t ′||2

2l2

)

Covariance matrix is built
using the inputs to the
function t.

For the example above it
was based on Euclidean
distance.

The covariance function is
also know as a kernel.
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with l = 10−
1
2 , α = 1
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with l = 1, α = 1
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with l = 0.3, α = 4
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Gaussian Process Regression

demRegression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Learning Kernel Parameters
Can we determine length scales and noise levels from the data?

demOptimiseKern
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Linear Activation Model

Recall the linear model

dxj (t)

dt
= Bj + Sj f (t)− Djxj (t) .

This differential equation can be solved for xj (t) as

xj (t) =
Bj

Dj
+ Sj

∫ t

0
e−Dj (t−u)f (u) du .

Note: This is a linear operation on f (t).

If f (t) is a zero mean Gaussian process then xi (t) is also a Gaussian
process with mean Bi

Di
.
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Covariance for Transcription Model

RBF covariance function for f (t)

xi (t) =
Bi

Di
+ Si exp (−Di t)

∫ t

0
f (u) exp (Diu) du.

Joint distribution
for x1 (t), x2 (t)
and f (t).

I Here:

D1 S1 D2 S2
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Joint Sampling of x (t) and f (t) from Covariance

gpsimTest
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Figure: Left: joint samples from the transcription covariance, blue: f (t), cyan:
x1 (t) and red : x2 (t). Right: numerical solution for f (t) of the differential
equation from x1 (t) and x2 (t) (blue and cyan). True f (t) included for
comparison.
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Artificial Example: Inferring f (t)
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p53 (RBF covariance)

Pei Gao
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Ranking with ERK Signalling

Target Ranking for Elk-1.

Elk-1 is phosphorylated by ERK from the EGF signalling pathway.

Predict concentration of Elk-1 from known targets.

Rank other targets of Elk-1.
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Elk-1 (MLP covariance)

Jennifer Withers
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Elk-1 target selection

Fitted model used to rank potential targets of Elk-1
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Cascaded Differential Equations

Antti Honkela

Transcription factor protein also has governing mRNA.

This mRNA can be measured.

In signalling systems this measurement can be misleading because it is
activated (phosphorylated) transcription factor that counts.

In development phosphorylation plays less of a role.
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Covariance for Translation/Transcription Model

RBF covariance function for y (t)

f (t) = σ exp (−δt)

Z t

0

y(u) exp (δu) du

xi (t) =
Bi

Di
+ Si exp (−Di t)

Z t

0

f (u) exp (Diu) du.

Joint distribution
for x1 (t), x2 (t),
f (t) and y (t).

Here:
δ D1 S1 D2 S2
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Results for Mef2 using the Cascade model
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Discussion and Future Work

Integration of probabilistic inference with mechanistic models.

These results are small simple systems (we skipped non-linear).

Ongoing work:

I Scaling up to larger systems
I Applications to other types of system, e.g. non-steady-state

metabolomics, spatial systems etc.
I Improved approximations.
I Stochastic differential equations
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