edit

A Hybrid MaxEnt/HMM Based ASR System

Proceedings of Interspeech 2005 --- 9th European Conference on Speech Communication and Technology, 2005.

Abstract

The aim of this work is to develop a practical framework, which extends the classical Hidden Markov Model (HMM) for continuous speech recognition based on the Maximum Entropy (MaxEnt) principle. The MaxEnt models can estimate the posterior probabilities directly as with Hybrid NN/HMM connectionist speech recogniton systems. In particular, a new acoustic modelling based on discriminative MaxEnt models is formulated and is being developed to replace the generative Gaussian Mixture Models (GMM) commonly used to model acoustic variability. Initial experimental results using the TIMIT phone task are reported.

This site last compiled Fri, 06 Dec 2024 20:39:33 +0000
Github Account Copyright © Neil D. Lawrence 2024. All rights reserved.