edit

Variational Inference in Gaussian Processes via Probabilistic Point Assimilation

Nathaniel J. King, Neil D. Lawrence
, 2005.

Abstract

We introduce a novel variational approach for approximate inference in Gaussian process (GP) models. The key advantages of our approach are the ease with which different noise models can be incorporated and improved speed of convergence. We refer to the algorithm as probabilistic point assimilation (PPA). We introduce the algorithm firstly using the ‘weight space’ view and then through its Gaussian process formulation. We illustrate the approach on several benchmark data sets.

This site last compiled Fri, 06 Dec 2024 20:39:33 +0000
Github Account Copyright © Neil D. Lawrence 2024. All rights reserved.