edit

Chained Gaussian Processes

Proceedings of the Nineteenth International Workshop on Artificial Intelligence and Statistics, PMLR 51:1431-1440, 2016.

Abstract

Gaussian process models are flexible, Bayesian non-parametric approaches to regression. Properties of multivariate Gaussians mean that they can be combined linearly in the manner of additive models and via a link function (like in generalized linear models) to handle non-Gaussian data. However, the link function formalism is restrictive, link functions are always invertible and must convert a parameter of interest to an linear combination of the underlying processes. There are many likelihoods and models where a non-linear combination is more appropriate. We term these more general models “Chained Gaussian Processes”: the transformation of the GPs to the likelihood parameters will not generally be invertible, and that implies that linearisation would only be possible with multiple (localized) links, i.e a chain. We develop an approximate inference procedure for Chained GPs that is scalable and applicable to any factorized likelihood. We demonstrate the approximation on a range of likelihood functions.

This site last compiled Fri, 06 Dec 2024 20:39:33 +0000
Github Account Copyright © Neil D. Lawrence 2024. All rights reserved.