edit

Efficient Inference in Matrix-Variate Gaussian Models with i.i.d. Observation Noise

Neural Information Processing Systems:630-638, 2011.

Abstract

Inference in matrix-variate Gaussian models has major applications for multi- output prediction and joint learning of row and column covariances from matrix- variate data. Here, we discuss an approach for efficient inference in such models that explicitly account for iid observation noise. Computational
tractability can be retained by exploiting the Kronecker product between row and column covariance matrices. Using this framework, we show how to generalize the Graphical Lasso in order to learn a sparse inverse covariance between features while accounting for a low-rank confounding covariance between samples. We show practical utility on applications to biology, where we model covariances with more than 100,000 dimensions. We find greater accuracy in recovering biological network structures and are able to better reconstruct the confounders.

This site last compiled Fri, 06 Dec 2024 20:39:33 +0000
Github Account Copyright © Neil D. Lawrence 2024. All rights reserved.