\[\newcommand{\tk}[1]{} %\newcommand{\tk}[1]{\textbf{TK}: #1} \newcommand{\Amatrix}{\mathbf{A}} \newcommand{\KL}[2]{\text{KL}\left( #1\,\|\,#2 \right)} \newcommand{\Kaast}{\kernelMatrix_{\mathbf{ \ast}\mathbf{ \ast}}} \newcommand{\Kastu}{\kernelMatrix_{\mathbf{ \ast} \inducingVector}} \newcommand{\Kff}{\kernelMatrix_{\mappingFunctionVector \mappingFunctionVector}} \newcommand{\Kfu}{\kernelMatrix_{\mappingFunctionVector \inducingVector}} \newcommand{\Kuast}{\kernelMatrix_{\inducingVector \bf\ast}} \newcommand{\Kuf}{\kernelMatrix_{\inducingVector \mappingFunctionVector}} \newcommand{\Kuu}{\kernelMatrix_{\inducingVector \inducingVector}} \newcommand{\Kuui}{\Kuu^{-1}} \newcommand{\Qaast}{\mathbf{Q}_{\bf \ast \ast}} \newcommand{\Qastf}{\mathbf{Q}_{\ast \mappingFunction}} \newcommand{\Qfast}{\mathbf{Q}_{\mappingFunctionVector \bf \ast}} \newcommand{\Qff}{\mathbf{Q}_{\mappingFunctionVector \mappingFunctionVector}} \newcommand{\aMatrix}{\mathbf{A}} \newcommand{\aScalar}{a} \newcommand{\aVector}{\mathbf{a}} \newcommand{\acceleration}{a} \newcommand{\bMatrix}{\mathbf{B}} \newcommand{\bScalar}{b} \newcommand{\bVector}{\mathbf{b}} \newcommand{\basisFunc}{\phi} \newcommand{\basisFuncVector}{\boldsymbol{ \basisFunc}} \newcommand{\basisFunction}{\phi} \newcommand{\basisLocation}{\mu} \newcommand{\basisMatrix}{\boldsymbol{ \Phi}} \newcommand{\basisScalar}{\basisFunction} \newcommand{\basisVector}{\boldsymbol{ \basisFunction}} \newcommand{\activationFunction}{\phi} \newcommand{\activationMatrix}{\boldsymbol{ \Phi}} \newcommand{\activationScalar}{\basisFunction} \newcommand{\activationVector}{\boldsymbol{ \basisFunction}} \newcommand{\bigO}{\mathcal{O}} \newcommand{\binomProb}{\pi} \newcommand{\cMatrix}{\mathbf{C}} \newcommand{\cbasisMatrix}{\hat{\boldsymbol{ \Phi}}} \newcommand{\cdataMatrix}{\hat{\dataMatrix}} \newcommand{\cdataScalar}{\hat{\dataScalar}} \newcommand{\cdataVector}{\hat{\dataVector}} \newcommand{\centeredKernelMatrix}{\mathbf{ \MakeUppercase{\centeredKernelScalar}}} \newcommand{\centeredKernelScalar}{b} \newcommand{\centeredKernelVector}{\centeredKernelScalar} \newcommand{\centeringMatrix}{\mathbf{H}} \newcommand{\chiSquaredDist}[2]{\chi_{#1}^{2}\left(#2\right)} \newcommand{\chiSquaredSamp}[1]{\chi_{#1}^{2}} \newcommand{\conditionalCovariance}{\boldsymbol{ \Sigma}} \newcommand{\coregionalizationMatrix}{\mathbf{B}} \newcommand{\coregionalizationScalar}{b} \newcommand{\coregionalizationVector}{\mathbf{ \coregionalizationScalar}} \newcommand{\covDist}[2]{\text{cov}_{#2}\left(#1\right)} \newcommand{\covSamp}[1]{\text{cov}\left(#1\right)} \newcommand{\covarianceScalar}{c} \newcommand{\covarianceVector}{\mathbf{ \covarianceScalar}} \newcommand{\covarianceMatrix}{\mathbf{C}} \newcommand{\covarianceMatrixTwo}{\boldsymbol{ \Sigma}} \newcommand{\croupierScalar}{s} \newcommand{\croupierVector}{\mathbf{ \croupierScalar}} \newcommand{\croupierMatrix}{\mathbf{ \MakeUppercase{\croupierScalar}}} \newcommand{\dataDim}{p} \newcommand{\dataIndex}{i} \newcommand{\dataIndexTwo}{j} \newcommand{\dataMatrix}{\mathbf{Y}} \newcommand{\dataScalar}{y} \newcommand{\dataSet}{\mathcal{D}} \newcommand{\dataStd}{\sigma} \newcommand{\dataVector}{\mathbf{ \dataScalar}} \newcommand{\decayRate}{d} \newcommand{\degreeMatrix}{\mathbf{ \MakeUppercase{\degreeScalar}}} \newcommand{\degreeScalar}{d} \newcommand{\degreeVector}{\mathbf{ \degreeScalar}} % Already defined by latex %\newcommand{\det}[1]{\left|#1\right|} \newcommand{\diag}[1]{\text{diag}\left(#1\right)} \newcommand{\diagonalMatrix}{\mathbf{D}} \newcommand{\diff}[2]{\frac{\text{d}#1}{\text{d}#2}} \newcommand{\diffTwo}[2]{\frac{\text{d}^2#1}{\text{d}#2^2}} \newcommand{\displacement}{x} \newcommand{\displacementVector}{\textbf{\displacement}} \newcommand{\distanceMatrix}{\mathbf{ \MakeUppercase{\distanceScalar}}} \newcommand{\distanceScalar}{d} \newcommand{\distanceVector}{\mathbf{ \distanceScalar}} \newcommand{\eigenvaltwo}{\ell} \newcommand{\eigenvaltwoMatrix}{\mathbf{L}} \newcommand{\eigenvaltwoVector}{\mathbf{l}} \newcommand{\eigenvalue}{\lambda} \newcommand{\eigenvalueMatrix}{\boldsymbol{ \Lambda}} \newcommand{\eigenvalueVector}{\boldsymbol{ \lambda}} \newcommand{\eigenvector}{\mathbf{ \eigenvectorScalar}} \newcommand{\eigenvectorMatrix}{\mathbf{U}} \newcommand{\eigenvectorScalar}{u} \newcommand{\eigenvectwo}{\mathbf{v}} \newcommand{\eigenvectwoMatrix}{\mathbf{V}} \newcommand{\eigenvectwoScalar}{v} \newcommand{\entropy}[1]{\mathcal{H}\left(#1\right)} \newcommand{\errorFunction}{E} \newcommand{\expDist}[2]{\left<#1\right>_{#2}} \newcommand{\expSamp}[1]{\left<#1\right>} \newcommand{\expectation}[1]{\left\langle #1 \right\rangle } \newcommand{\expectationDist}[2]{\left\langle #1 \right\rangle _{#2}} \newcommand{\expectedDistanceMatrix}{\mathcal{D}} \newcommand{\eye}{\mathbf{I}} \newcommand{\fantasyDim}{r} \newcommand{\fantasyMatrix}{\mathbf{ \MakeUppercase{\fantasyScalar}}} \newcommand{\fantasyScalar}{z} \newcommand{\fantasyVector}{\mathbf{ \fantasyScalar}} \newcommand{\featureStd}{\varsigma} \newcommand{\gammaCdf}[3]{\mathcal{GAMMA CDF}\left(#1|#2,#3\right)} \newcommand{\gammaDist}[3]{\mathcal{G}\left(#1|#2,#3\right)} \newcommand{\gammaSamp}[2]{\mathcal{G}\left(#1,#2\right)} \newcommand{\gaussianDist}[3]{\mathcal{N}\left(#1|#2,#3\right)} \newcommand{\gaussianSamp}[2]{\mathcal{N}\left(#1,#2\right)} \newcommand{\given}{|} \newcommand{\half}{\frac{1}{2}} \newcommand{\heaviside}{H} \newcommand{\hiddenMatrix}{\mathbf{ \MakeUppercase{\hiddenScalar}}} \newcommand{\hiddenScalar}{h} \newcommand{\hiddenVector}{\mathbf{ \hiddenScalar}} \newcommand{\identityMatrix}{\eye} \newcommand{\inducingInputScalar}{z} \newcommand{\inducingInputVector}{\mathbf{ \inducingInputScalar}} \newcommand{\inducingInputMatrix}{\mathbf{Z}} \newcommand{\inducingScalar}{u} \newcommand{\inducingVector}{\mathbf{ \inducingScalar}} \newcommand{\inducingMatrix}{\mathbf{U}} \newcommand{\inlineDiff}[2]{\text{d}#1/\text{d}#2} \newcommand{\inputDim}{q} \newcommand{\inputMatrix}{\mathbf{X}} \newcommand{\inputScalar}{x} \newcommand{\inputSpace}{\mathcal{X}} \newcommand{\inputVals}{\inputVector} \newcommand{\inputVector}{\mathbf{ \inputScalar}} \newcommand{\iterNum}{k} \newcommand{\kernel}{\kernelScalar} \newcommand{\kernelMatrix}{\mathbf{K}} \newcommand{\kernelScalar}{k} \newcommand{\kernelVector}{\mathbf{ \kernelScalar}} \newcommand{\kff}{\kernelScalar_{\mappingFunction \mappingFunction}} \newcommand{\kfu}{\kernelVector_{\mappingFunction \inducingScalar}} \newcommand{\kuf}{\kernelVector_{\inducingScalar \mappingFunction}} \newcommand{\kuu}{\kernelVector_{\inducingScalar \inducingScalar}} \newcommand{\lagrangeMultiplier}{\lambda} \newcommand{\lagrangeMultiplierMatrix}{\boldsymbol{ \Lambda}} \newcommand{\lagrangian}{L} \newcommand{\laplacianFactor}{\mathbf{ \MakeUppercase{\laplacianFactorScalar}}} \newcommand{\laplacianFactorScalar}{m} \newcommand{\laplacianFactorVector}{\mathbf{ \laplacianFactorScalar}} \newcommand{\laplacianMatrix}{\mathbf{L}} \newcommand{\laplacianScalar}{\ell} \newcommand{\laplacianVector}{\mathbf{ \ell}} \newcommand{\latentDim}{q} \newcommand{\latentDistanceMatrix}{\boldsymbol{ \Delta}} \newcommand{\latentDistanceScalar}{\delta} \newcommand{\latentDistanceVector}{\boldsymbol{ \delta}} \newcommand{\latentForce}{f} \newcommand{\latentFunction}{u} \newcommand{\latentFunctionVector}{\mathbf{ \latentFunction}} \newcommand{\latentFunctionMatrix}{\mathbf{ \MakeUppercase{\latentFunction}}} \newcommand{\latentIndex}{j} \newcommand{\latentScalar}{z} \newcommand{\latentVector}{\mathbf{ \latentScalar}} \newcommand{\latentMatrix}{\mathbf{Z}} \newcommand{\learnRate}{\eta} \newcommand{\lengthScale}{\ell} \newcommand{\rbfWidth}{\ell} \newcommand{\likelihoodBound}{\mathcal{L}} \newcommand{\likelihoodFunction}{L} \newcommand{\locationScalar}{\mu} \newcommand{\locationVector}{\boldsymbol{ \locationScalar}} \newcommand{\locationMatrix}{\mathbf{M}} \newcommand{\variance}[1]{\text{var}\left( #1 \right)} \newcommand{\mappingFunction}{f} \newcommand{\mappingFunctionMatrix}{\mathbf{F}} \newcommand{\mappingFunctionTwo}{g} \newcommand{\mappingFunctionTwoMatrix}{\mathbf{G}} \newcommand{\mappingFunctionTwoVector}{\mathbf{ \mappingFunctionTwo}} \newcommand{\mappingFunctionVector}{\mathbf{ \mappingFunction}} \newcommand{\scaleScalar}{s} \newcommand{\mappingScalar}{w} \newcommand{\mappingVector}{\mathbf{ \mappingScalar}} \newcommand{\mappingMatrix}{\mathbf{W}} \newcommand{\mappingScalarTwo}{v} \newcommand{\mappingVectorTwo}{\mathbf{ \mappingScalarTwo}} \newcommand{\mappingMatrixTwo}{\mathbf{V}} \newcommand{\maxIters}{K} \newcommand{\meanMatrix}{\mathbf{M}} \newcommand{\meanScalar}{\mu} \newcommand{\meanTwoMatrix}{\mathbf{M}} \newcommand{\meanTwoScalar}{m} \newcommand{\meanTwoVector}{\mathbf{ \meanTwoScalar}} \newcommand{\meanVector}{\boldsymbol{ \meanScalar}} \newcommand{\mrnaConcentration}{m} \newcommand{\naturalFrequency}{\omega} \newcommand{\neighborhood}[1]{\mathcal{N}\left( #1 \right)} \newcommand{\neilurl}{http://inverseprobability.com/} \newcommand{\noiseMatrix}{\boldsymbol{ E}} \newcommand{\noiseScalar}{\epsilon} \newcommand{\noiseVector}{\boldsymbol{ \epsilon}} \newcommand{\norm}[1]{\left\Vert #1 \right\Vert} \newcommand{\normalizedLaplacianMatrix}{\hat{\mathbf{L}}} \newcommand{\normalizedLaplacianScalar}{\hat{\ell}} \newcommand{\normalizedLaplacianVector}{\hat{\mathbf{ \ell}}} \newcommand{\numActive}{m} \newcommand{\numBasisFunc}{m} \newcommand{\numComponents}{m} \newcommand{\numComps}{K} \newcommand{\numData}{n} \newcommand{\numFeatures}{K} \newcommand{\numHidden}{h} \newcommand{\numInducing}{m} \newcommand{\numLayers}{\ell} \newcommand{\numNeighbors}{K} \newcommand{\numSequences}{s} \newcommand{\numSuccess}{s} \newcommand{\numTasks}{m} \newcommand{\numTime}{T} \newcommand{\numTrials}{S} \newcommand{\outputIndex}{j} \newcommand{\paramVector}{\boldsymbol{ \theta}} \newcommand{\parameterMatrix}{\boldsymbol{ \Theta}} \newcommand{\parameterScalar}{\theta} \newcommand{\parameterVector}{\boldsymbol{ \parameterScalar}} \newcommand{\partDiff}[2]{\frac{\partial#1}{\partial#2}} \newcommand{\precisionScalar}{j} \newcommand{\precisionVector}{\mathbf{ \precisionScalar}} \newcommand{\precisionMatrix}{\mathbf{J}} \newcommand{\pseudotargetScalar}{\widetilde{y}} \newcommand{\pseudotargetVector}{\mathbf{ \pseudotargetScalar}} \newcommand{\pseudotargetMatrix}{\mathbf{ \widetilde{Y}}} \newcommand{\rank}[1]{\text{rank}\left(#1\right)} \newcommand{\rayleighDist}[2]{\mathcal{R}\left(#1|#2\right)} \newcommand{\rayleighSamp}[1]{\mathcal{R}\left(#1\right)} \newcommand{\responsibility}{r} \newcommand{\rotationScalar}{r} \newcommand{\rotationVector}{\mathbf{ \rotationScalar}} \newcommand{\rotationMatrix}{\mathbf{R}} \newcommand{\sampleCovScalar}{s} \newcommand{\sampleCovVector}{\mathbf{ \sampleCovScalar}} \newcommand{\sampleCovMatrix}{\mathbf{s}} \newcommand{\scalarProduct}[2]{\left\langle{#1},{#2}\right\rangle} \newcommand{\sign}[1]{\text{sign}\left(#1\right)} \newcommand{\sigmoid}[1]{\sigma\left(#1\right)} \newcommand{\singularvalue}{\ell} \newcommand{\singularvalueMatrix}{\mathbf{L}} \newcommand{\singularvalueVector}{\mathbf{l}} \newcommand{\sorth}{\mathbf{u}} \newcommand{\spar}{\lambda} \newcommand{\trace}[1]{\text{tr}\left(#1\right)} \newcommand{\BasalRate}{B} \newcommand{\DampingCoefficient}{C} \newcommand{\DecayRate}{D} \newcommand{\Displacement}{X} \newcommand{\LatentForce}{F} \newcommand{\Mass}{M} \newcommand{\Sensitivity}{S} \newcommand{\basalRate}{b} \newcommand{\dampingCoefficient}{c} \newcommand{\mass}{m} \newcommand{\sensitivity}{s} \newcommand{\springScalar}{\kappa} \newcommand{\springVector}{\boldsymbol{ \kappa}} \newcommand{\springMatrix}{\boldsymbol{ \mathcal{K}}} \newcommand{\tfConcentration}{p} \newcommand{\tfDecayRate}{\delta} \newcommand{\tfMrnaConcentration}{f} \newcommand{\tfVector}{\mathbf{ \tfConcentration}} \newcommand{\velocity}{v} \newcommand{\sufficientStatsScalar}{g} \newcommand{\sufficientStatsVector}{\mathbf{ \sufficientStatsScalar}} \newcommand{\sufficientStatsMatrix}{\mathbf{G}} \newcommand{\switchScalar}{s} \newcommand{\switchVector}{\mathbf{ \switchScalar}} \newcommand{\switchMatrix}{\mathbf{S}} \newcommand{\tr}[1]{\text{tr}\left(#1\right)} \newcommand{\loneNorm}[1]{\left\Vert #1 \right\Vert_1} \newcommand{\ltwoNorm}[1]{\left\Vert #1 \right\Vert_2} \newcommand{\onenorm}[1]{\left\vert#1\right\vert_1} \newcommand{\twonorm}[1]{\left\Vert #1 \right\Vert} \newcommand{\vScalar}{v} \newcommand{\vVector}{\mathbf{v}} \newcommand{\vMatrix}{\mathbf{V}} \newcommand{\varianceDist}[2]{\text{var}_{#2}\left( #1 \right)} % Already defined by latex %\newcommand{\vec}{#1:} \newcommand{\vecb}[1]{\left(#1\right):} \newcommand{\weightScalar}{w} \newcommand{\weightVector}{\mathbf{ \weightScalar}} \newcommand{\weightMatrix}{\mathbf{W}} \newcommand{\weightedAdjacencyMatrix}{\mathbf{A}} \newcommand{\weightedAdjacencyScalar}{a} \newcommand{\weightedAdjacencyVector}{\mathbf{ \weightedAdjacencyScalar}} \newcommand{\onesVector}{\mathbf{1}} \newcommand{\zerosVector}{\mathbf{0}} \]

Uncertainty in Loss Functions

Neil D. Lawrence

IWCV 2018, Modena, Italy

What is Machine Learning?

\[ \text{data} + \text{model} \xrightarrow{\text{compute}} \text{prediction}\]

  • data : observations, could be actively or passively acquired (meta-data).
  • model : assumptions, based on previous experience (other data! transfer learning etc), or beliefs about the regularities of the universe. Inductive bias.
  • prediction : an action to be taken or a categorization or a quality score.

What is Machine Learning?

\[\text{data} + \text{model} \xrightarrow{\text{compute}} \text{prediction}\]

  • To combine data with a model need:
  • a prediction function \(\mappingFunction (\cdot)\) includes our beliefs about the regularities of the universe
  • an objective function \(\errorFunction (\cdot)\) defines the cost of misprediction.

Artificial vs Natural Systems

  • Consider natural intelligence, or natural systems
  • Contrast between an artificial system and an natural system.
  • The key difference between the two is that artificial systems are designed whereas natural systems are evolved.

Natural Systems are Evolved

Survival of the fittest

?

Natural Systems are Evolved

Survival of the fittest

Herbet Spencer, 1864

Natural Systems are Evolved

Non-survival of the non-fit

Mistake we Make

  • Equate fitness for objective function.
  • Assume static environment and known objective.

.

Classical Loss Function

\[ \errorFunction(\dataVector, \inputMatrix) = \sum_{k}\sum_{j} L(\dataScalar_{k,j}, \inputVector_k) \]

  • Dependent on a prediction function \[ \errorFunction(\dataVector, \inputMatrix) = \sum_{k}\sum_{j} L(\dataScalar_{k,j}, \mappingFunction_j(\inputVector_k)) \]

Absorb \(j\) into \(\inputVector\)

\[ \errorFunction(\dataVector, \inputMatrix) = \sum_{i} L(\dataScalar_i, \mappingFunction(\inputVector_i)) \]

Introduce Uncertainty

  • Introduce \(\left\{ \scaleScalar_i\right\}_{i=1}^\numData\). \[ \errorFunction(\dataVector, \inputMatrix) = \sum_{i} \scaleScalar_i L(\dataScalar_i, \mappingFunction(\inputVector_i)) \]

  • Assume \(\scaleScalar \sim q(\scaleScalar)\) \[ \begin{align*} \errorFunction(\dataVector, \inputMatrix) = & \sum_{i}\expectationDist{\scaleScalar_i L(\dataScalar_i, \mappingFunction(\inputVector_i))}{q(\scaleScalar)} \\ & =\sum_{i}\expectationDist{\scaleScalar_i }{q(\scaleScalar)}L(\dataScalar_i, \mappingFunction(\inputVector_i)) \end{align*} \]

Principle of Maximum Entropy

  • Maximum entropy principle \[ H(\scaleScalar)= - \int q(\scaleScalar) \log \frac{q(\scaleScalar)}{m(\scaleScalar)} \text{d}\scaleScalar \]
  • Minimize loss minus Entropy \[ \begin{align*} \errorFunction = & \beta\sum_{i}\expectationDist{\scaleScalar_i }{q(\scaleScalar)}L(\dataScalar_i, \mappingFunction(\inputVector_i)) - H(\scaleScalar)\\ &= \beta\sum_{i}\expectationDist{\scaleScalar_i }{q(\scaleScalar)}L(\dataScalar_i, \mappingFunction(\inputVector_i)) + \int q(\scaleScalar) \log \frac{q(\scaleScalar)}{m(\scaleScalar)}\text{d}\scaleScalar \end{align*} \]

Freeform Minimization wrt \(q(\scaleScalar)\)

\[ \begin{align*} q(\scaleScalar) \propto & \exp\left(- \beta \sum_{i=1}^\numData \scaleScalar_i L(\dataScalar_i, \mappingFunction(\inputVector_i)) \right) m(\scaleScalar)\\ \propto & \prod_{i=1}^\numData \exp\left(- \beta \scaleScalar_i L(\dataScalar_i, \mappingFunction(\inputVector_i)) \right) m(\scaleScalar) \end{align*} \]

Example

  • Assume \[ m(\scaleScalar) = \prod_i \lambda\exp\left(-\lambda\scaleScalar_i\right) \]

  • Then we have \[ q(\scaleScalar) = \prod_i q(\scaleScalar_i) \] \[ q(\scaleScalar_i) \propto \frac{1}{\lambda+\beta L_i} \exp\left(-(\lambda+\beta L_i) \scaleScalar_i\right) \]
  • And \[ \expectationDist{\scaleScalar_i}{q(\scaleScalar)} = \frac{1}{\lambda + \beta L_i} \]

Coordinate Descent

  • Optimize wrt \(q(\cdot)\) \[ q(\scaleScalar_i) = \frac{1}{\lambda+\beta L_i} \exp\left(-(\lambda+\beta L_i) \scaleScalar_i\right) \]t
  • Update expectation \[ \expectationDist{\scaleScalar_i}{q(\scaleScalar_i)} = \frac{1}{\lambda+\beta L_i} \]
  • Minimize expected loss \[ \beta \sum_{i=1}^\numData \expectationDist{\scaleScalar_i}{q(\scaleScalar_i)} L(\dataScalar_i, \mappingFunction(\inputVector_i)) \]

Olympic Marathon Data

  • Gold medal times for Olympic Marathon since 1896.
  • Marathons before 1924 didn’t have a standardised distance.
  • Present results using pace per km.
  • In 1904 Marathon was badly organised leading to very slow times.
Image from Wikimedia Commons http://bit.ly/16kMKHQ

Olympic Marathon Data

Example: Linear Regression

Linear Regression on Olympic Data

Linear Regression on Olympic Data

Parameter Uncertainty

  • In Bayesian inference we consider parameter uncertainty

\[ \expectationDist{\beta \scaleScalar_i L(\dataScalar_i, \mappingFunction(\inputVector_i))}{q(\scaleScalar, \mappingFunction)} + \int q(\scaleScalar, \mappingFunction) \log \frac{q(\scaleScalar, \mappingFunction)}{m(\scaleScalar)m(\mappingFunction)}\text{d}\scaleScalar \text{d}\mappingFunction \] * Implying \[ q(\mappingFunction, \scaleScalar) \propto \prod_{i=1}^\numData \exp\left(- \beta \scaleScalar_i L(\dataScalar_i, \mappingFunction(\inputVector_i)) \right) m(\scaleScalar)m(\mappingFunction) \]

Approximation

  • Generally intractable, so assume: \[ q(\mappingFunction, \scaleScalar) = q(\mappingFunction)q(\scaleScalar) \]

Approximation II

  • Entropy maximization proceeds as before but with \[ q(\scaleScalar) \propto \prod_{i=1}^\numData \exp\left(- \beta \scaleScalar_i \expectationDist{L(\dataScalar_i, \mappingFunction(\inputVector_i))}{q(\mappingFunction)} \right) m(\scaleScalar) \] and \[ q(\mappingFunction) \propto \prod_{i=1}^\numData \exp\left(- \beta \expectationDist{\scaleScalar_i}{q(\scaleScalar)} L(\dataScalar_i, \mappingFunction(\inputVector_i)) \right) m(\mappingFunction) \]

Approximation III

  • Can now proceed with iteration between \(q(\scaleScalar)\), \(q(\mappingFunction)\)

Probabilistic Linear Regression on Olympic Data

Probabilistic Linear Regression on Olympic Data

Correlated Scales

  • Assume the measure is a GP \[ \vScalar \sim \mathcal{GP}\left(\meanScalar(\inputVector), \kernel(\inputVector, \inputVector^\prime)\right) \]
  • Assume \(\scaleScalar = \vScalar^2\)

Correlated Scales II

  • Implies \[ q(\vScalar) \propto \prod_{i=1}^\numData \exp\left(- \beta \vScalar_i^2 L(\dataScalar_i, \mappingFunction(\inputVector_i)) \right)\mathcal{GP}\left(\meanScalar(\inputVector), \kernel(\inputVector, \inputVector^\prime)\right) \]
  • Gives \(q(\vScalar)\) as Gaussian with covariance: \[ \covarianceMatrix = \left(\beta\mathbf{L} + \kernelMatrix^{-1}\right)^{-1} \] and mean \[ \meanTwoVector = \beta\covarianceMatrix\mathbf{L}\meanVector \]

Expectation Update

  • The update is given by \[ \expectationDist{\vScalar_i^2}{q(\vScalar)} = \meanTwoScalar_i^2 + \covarianceScalar_{i, i}. \]
  • If measure covariance spherical and mean zero \[ \expectationDist{\vScalar_i^2}{q(\vScalar)} = \frac{1}{\lambda + \beta L_i} \] which is the same as we had before for the exponential prior over \(\scaleScalar\).

Conditioning the Measure

  • Condition measure to be high weight in test region \[ \kernelMatrix^\prime = \kernelMatrix - \frac{\kernelVector_\ast\kernelVector^\top_\ast}{\kernelScalar_{*,*}} \] and \[ \meanVector^\prime = \meanVector + \frac{\kernelVector_\ast}{\kernelScalar_{*,*}} (\vScalar_\ast-\meanScalar) \]

  • As covariance becomes small, this becomes LOESS regression

Olympic Data: GP Measure

Olympic Data: GP Measure

Joint Uncertainty

}{olympic-gp-loss-samples}

Joint Samples from Regression

{

Joint Samples from Regression

Histogram from 2020

Conclusions

  • Maximum Entropy Framework for uncertainty in
    • Loss functions
    • Prediction functions

Thanks!

References