at Science Week Talk, University of Sheffield on Mar 17, 2016
[reveal ]
Abstract
There have been fears voiced by Elon Musk and Stephen Hawking about the direction of artificial intelligent research. They worry about the creation of a sentient AI, one that might outwit us. However, the nature of the AI we have actually created is a long way distant from this. In this talk we will try and relate our models of artificial intelligence to models that have been proposed for the way humans think. The AI that Hawking and Musk fear is not yet here, but is the AI we have actually developed more or less disturbing than the vision they project?
$$\newcommand{\tk}[1]{}
\newcommand{\Amatrix}{\mathbf{A}}
\newcommand{\KL}[2]{\text{KL}\left( #1\,\|\,#2 \right)}
\newcommand{\Kaast}{\kernelMatrix_{\mathbf{ \ast}\mathbf{ \ast}}}
\newcommand{\Kastu}{\kernelMatrix_{\mathbf{ \ast} \inducingVector}}
\newcommand{\Kff}{\kernelMatrix_{\mappingFunctionVector \mappingFunctionVector}}
\newcommand{\Kfu}{\kernelMatrix_{\mappingFunctionVector \inducingVector}}
\newcommand{\Kuast}{\kernelMatrix_{\inducingVector \bf\ast}}
\newcommand{\Kuf}{\kernelMatrix_{\inducingVector \mappingFunctionVector}}
\newcommand{\Kuu}{\kernelMatrix_{\inducingVector \inducingVector}}
\newcommand{\Kuui}{\Kuu^{-1}}
\newcommand{\Qaast}{\mathbf{Q}_{\bf \ast \ast}}
\newcommand{\Qastf}{\mathbf{Q}_{\ast \mappingFunction}}
\newcommand{\Qfast}{\mathbf{Q}_{\mappingFunctionVector \bf \ast}}
\newcommand{\Qff}{\mathbf{Q}_{\mappingFunctionVector \mappingFunctionVector}}
\newcommand{\aMatrix}{\mathbf{A}}
\newcommand{\aScalar}{a}
\newcommand{\aVector}{\mathbf{a}}
\newcommand{\acceleration}{a}
\newcommand{\bMatrix}{\mathbf{B}}
\newcommand{\bScalar}{b}
\newcommand{\bVector}{\mathbf{b}}
\newcommand{\basisFunc}{\phi}
\newcommand{\basisFuncVector}{\boldsymbol{ \basisFunc}}
\newcommand{\basisFunction}{\phi}
\newcommand{\basisLocation}{\mu}
\newcommand{\basisMatrix}{\boldsymbol{ \Phi}}
\newcommand{\basisScalar}{\basisFunction}
\newcommand{\basisVector}{\boldsymbol{ \basisFunction}}
\newcommand{\activationFunction}{\phi}
\newcommand{\activationMatrix}{\boldsymbol{ \Phi}}
\newcommand{\activationScalar}{\basisFunction}
\newcommand{\activationVector}{\boldsymbol{ \basisFunction}}
\newcommand{\bigO}{\mathcal{O}}
\newcommand{\binomProb}{\pi}
\newcommand{\cMatrix}{\mathbf{C}}
\newcommand{\cbasisMatrix}{\hat{\boldsymbol{ \Phi}}}
\newcommand{\cdataMatrix}{\hat{\dataMatrix}}
\newcommand{\cdataScalar}{\hat{\dataScalar}}
\newcommand{\cdataVector}{\hat{\dataVector}}
\newcommand{\centeredKernelMatrix}{\mathbf{ \MakeUppercase{\centeredKernelScalar}}}
\newcommand{\centeredKernelScalar}{b}
\newcommand{\centeredKernelVector}{\centeredKernelScalar}
\newcommand{\centeringMatrix}{\mathbf{H}}
\newcommand{\chiSquaredDist}[2]{\chi_{#1}^{2}\left(#2\right)}
\newcommand{\chiSquaredSamp}[1]{\chi_{#1}^{2}}
\newcommand{\conditionalCovariance}{\boldsymbol{ \Sigma}}
\newcommand{\coregionalizationMatrix}{\mathbf{B}}
\newcommand{\coregionalizationScalar}{b}
\newcommand{\coregionalizationVector}{\mathbf{ \coregionalizationScalar}}
\newcommand{\covDist}[2]{\text{cov}_{#2}\left(#1\right)}
\newcommand{\covSamp}[1]{\text{cov}\left(#1\right)}
\newcommand{\covarianceScalar}{c}
\newcommand{\covarianceVector}{\mathbf{ \covarianceScalar}}
\newcommand{\covarianceMatrix}{\mathbf{C}}
\newcommand{\covarianceMatrixTwo}{\boldsymbol{ \Sigma}}
\newcommand{\croupierScalar}{s}
\newcommand{\croupierVector}{\mathbf{ \croupierScalar}}
\newcommand{\croupierMatrix}{\mathbf{ \MakeUppercase{\croupierScalar}}}
\newcommand{\dataDim}{p}
\newcommand{\dataIndex}{i}
\newcommand{\dataIndexTwo}{j}
\newcommand{\dataMatrix}{\mathbf{Y}}
\newcommand{\dataScalar}{y}
\newcommand{\dataSet}{\mathcal{D}}
\newcommand{\dataStd}{\sigma}
\newcommand{\dataVector}{\mathbf{ \dataScalar}}
\newcommand{\decayRate}{d}
\newcommand{\degreeMatrix}{\mathbf{ \MakeUppercase{\degreeScalar}}}
\newcommand{\degreeScalar}{d}
\newcommand{\degreeVector}{\mathbf{ \degreeScalar}}
\newcommand{\diag}[1]{\text{diag}\left(#1\right)}
\newcommand{\diagonalMatrix}{\mathbf{D}}
\newcommand{\diff}[2]{\frac{\text{d}#1}{\text{d}#2}}
\newcommand{\diffTwo}[2]{\frac{\text{d}^2#1}{\text{d}#2^2}}
\newcommand{\displacement}{x}
\newcommand{\displacementVector}{\textbf{\displacement}}
\newcommand{\distanceMatrix}{\mathbf{ \MakeUppercase{\distanceScalar}}}
\newcommand{\distanceScalar}{d}
\newcommand{\distanceVector}{\mathbf{ \distanceScalar}}
\newcommand{\eigenvaltwo}{\ell}
\newcommand{\eigenvaltwoMatrix}{\mathbf{L}}
\newcommand{\eigenvaltwoVector}{\mathbf{l}}
\newcommand{\eigenvalue}{\lambda}
\newcommand{\eigenvalueMatrix}{\boldsymbol{ \Lambda}}
\newcommand{\eigenvalueVector}{\boldsymbol{ \lambda}}
\newcommand{\eigenvector}{\mathbf{ \eigenvectorScalar}}
\newcommand{\eigenvectorMatrix}{\mathbf{U}}
\newcommand{\eigenvectorScalar}{u}
\newcommand{\eigenvectwo}{\mathbf{v}}
\newcommand{\eigenvectwoMatrix}{\mathbf{V}}
\newcommand{\eigenvectwoScalar}{v}
\newcommand{\entropy}[1]{\mathcal{H}\left(#1\right)}
\newcommand{\errorFunction}{E}
\newcommand{\expDist}[2]{\left\langle#1\right\rangle_{#2}}
\newcommand{\expSamp}[1]{\left\langle#1\right\rangle}
\newcommand{\expectation}[1]{\left\langle #1 \right\rangle }
\newcommand{\expectationDist}[2]{\left\langle #1 \right\rangle _{#2}}
\newcommand{\expectedDistanceMatrix}{\mathcal{D}}
\newcommand{\eye}{\mathbf{I}}
\newcommand{\fantasyDim}{r}
\newcommand{\fantasyMatrix}{\mathbf{ \MakeUppercase{\fantasyScalar}}}
\newcommand{\fantasyScalar}{z}
\newcommand{\fantasyVector}{\mathbf{ \fantasyScalar}}
\newcommand{\featureStd}{\varsigma}
\newcommand{\gammaCdf}[3]{\mathcal{GAMMA CDF}\left(#1|#2,#3\right)}
\newcommand{\gammaDist}[3]{\mathcal{G}\left(#1|#2,#3\right)}
\newcommand{\gammaSamp}[2]{\mathcal{G}\left(#1,#2\right)}
\newcommand{\gaussianDist}[3]{\mathcal{N}\left(#1|#2,#3\right)}
\newcommand{\gaussianSamp}[2]{\mathcal{N}\left(#1,#2\right)}
\newcommand{\uniformDist}[3]{\mathcal{U}\left(#1|#2,#3\right)}
\newcommand{\uniformSamp}[2]{\mathcal{U}\left(#1,#2\right)}
\newcommand{\given}{|}
\newcommand{\half}{\frac{1}{2}}
\newcommand{\heaviside}{H}
\newcommand{\hiddenMatrix}{\mathbf{ \MakeUppercase{\hiddenScalar}}}
\newcommand{\hiddenScalar}{h}
\newcommand{\hiddenVector}{\mathbf{ \hiddenScalar}}
\newcommand{\identityMatrix}{\eye}
\newcommand{\inducingInputScalar}{z}
\newcommand{\inducingInputVector}{\mathbf{ \inducingInputScalar}}
\newcommand{\inducingInputMatrix}{\mathbf{Z}}
\newcommand{\inducingScalar}{u}
\newcommand{\inducingVector}{\mathbf{ \inducingScalar}}
\newcommand{\inducingMatrix}{\mathbf{U}}
\newcommand{\inlineDiff}[2]{\text{d}#1/\text{d}#2}
\newcommand{\inputDim}{q}
\newcommand{\inputMatrix}{\mathbf{X}}
\newcommand{\inputScalar}{x}
\newcommand{\inputSpace}{\mathcal{X}}
\newcommand{\inputVals}{\inputVector}
\newcommand{\inputVector}{\mathbf{ \inputScalar}}
\newcommand{\iterNum}{k}
\newcommand{\kernel}{\kernelScalar}
\newcommand{\kernelMatrix}{\mathbf{K}}
\newcommand{\kernelScalar}{k}
\newcommand{\kernelVector}{\mathbf{ \kernelScalar}}
\newcommand{\kff}{\kernelScalar_{\mappingFunction \mappingFunction}}
\newcommand{\kfu}{\kernelVector_{\mappingFunction \inducingScalar}}
\newcommand{\kuf}{\kernelVector_{\inducingScalar \mappingFunction}}
\newcommand{\kuu}{\kernelVector_{\inducingScalar \inducingScalar}}
\newcommand{\lagrangeMultiplier}{\lambda}
\newcommand{\lagrangeMultiplierMatrix}{\boldsymbol{ \Lambda}}
\newcommand{\lagrangian}{L}
\newcommand{\laplacianFactor}{\mathbf{ \MakeUppercase{\laplacianFactorScalar}}}
\newcommand{\laplacianFactorScalar}{m}
\newcommand{\laplacianFactorVector}{\mathbf{ \laplacianFactorScalar}}
\newcommand{\laplacianMatrix}{\mathbf{L}}
\newcommand{\laplacianScalar}{\ell}
\newcommand{\laplacianVector}{\mathbf{ \ell}}
\newcommand{\latentDim}{q}
\newcommand{\latentDistanceMatrix}{\boldsymbol{ \Delta}}
\newcommand{\latentDistanceScalar}{\delta}
\newcommand{\latentDistanceVector}{\boldsymbol{ \delta}}
\newcommand{\latentForce}{f}
\newcommand{\latentFunction}{u}
\newcommand{\latentFunctionVector}{\mathbf{ \latentFunction}}
\newcommand{\latentFunctionMatrix}{\mathbf{ \MakeUppercase{\latentFunction}}}
\newcommand{\latentIndex}{j}
\newcommand{\latentScalar}{z}
\newcommand{\latentVector}{\mathbf{ \latentScalar}}
\newcommand{\latentMatrix}{\mathbf{Z}}
\newcommand{\learnRate}{\eta}
\newcommand{\lengthScale}{\ell}
\newcommand{\rbfWidth}{\ell}
\newcommand{\likelihoodBound}{\mathcal{L}}
\newcommand{\likelihoodFunction}{L}
\newcommand{\locationScalar}{\mu}
\newcommand{\locationVector}{\boldsymbol{ \locationScalar}}
\newcommand{\locationMatrix}{\mathbf{M}}
\newcommand{\variance}[1]{\text{var}\left( #1 \right)}
\newcommand{\mappingFunction}{f}
\newcommand{\mappingFunctionMatrix}{\mathbf{F}}
\newcommand{\mappingFunctionTwo}{g}
\newcommand{\mappingFunctionTwoMatrix}{\mathbf{G}}
\newcommand{\mappingFunctionTwoVector}{\mathbf{ \mappingFunctionTwo}}
\newcommand{\mappingFunctionVector}{\mathbf{ \mappingFunction}}
\newcommand{\scaleScalar}{s}
\newcommand{\mappingScalar}{w}
\newcommand{\mappingVector}{\mathbf{ \mappingScalar}}
\newcommand{\mappingMatrix}{\mathbf{W}}
\newcommand{\mappingScalarTwo}{v}
\newcommand{\mappingVectorTwo}{\mathbf{ \mappingScalarTwo}}
\newcommand{\mappingMatrixTwo}{\mathbf{V}}
\newcommand{\maxIters}{K}
\newcommand{\meanMatrix}{\mathbf{M}}
\newcommand{\meanScalar}{\mu}
\newcommand{\meanTwoMatrix}{\mathbf{M}}
\newcommand{\meanTwoScalar}{m}
\newcommand{\meanTwoVector}{\mathbf{ \meanTwoScalar}}
\newcommand{\meanVector}{\boldsymbol{ \meanScalar}}
\newcommand{\mrnaConcentration}{m}
\newcommand{\naturalFrequency}{\omega}
\newcommand{\neighborhood}[1]{\mathcal{N}\left( #1 \right)}
\newcommand{\neilurl}{http://inverseprobability.com/}
\newcommand{\noiseMatrix}{\boldsymbol{ E}}
\newcommand{\noiseScalar}{\epsilon}
\newcommand{\noiseVector}{\boldsymbol{ \epsilon}}
\newcommand{\noiseStd}{\sigma}
\newcommand{\norm}[1]{\left\Vert #1 \right\Vert}
\newcommand{\normalizedLaplacianMatrix}{\hat{\mathbf{L}}}
\newcommand{\normalizedLaplacianScalar}{\hat{\ell}}
\newcommand{\normalizedLaplacianVector}{\hat{\mathbf{ \ell}}}
\newcommand{\numActive}{m}
\newcommand{\numBasisFunc}{m}
\newcommand{\numComponents}{m}
\newcommand{\numComps}{K}
\newcommand{\numData}{n}
\newcommand{\numFeatures}{K}
\newcommand{\numHidden}{h}
\newcommand{\numInducing}{m}
\newcommand{\numLayers}{\ell}
\newcommand{\numNeighbors}{K}
\newcommand{\numSequences}{s}
\newcommand{\numSuccess}{s}
\newcommand{\numTasks}{m}
\newcommand{\numTime}{T}
\newcommand{\numTrials}{S}
\newcommand{\outputIndex}{j}
\newcommand{\paramVector}{\boldsymbol{ \theta}}
\newcommand{\parameterMatrix}{\boldsymbol{ \Theta}}
\newcommand{\parameterScalar}{\theta}
\newcommand{\parameterVector}{\boldsymbol{ \parameterScalar}}
\newcommand{\partDiff}[2]{\frac{\partial#1}{\partial#2}}
\newcommand{\precisionScalar}{j}
\newcommand{\precisionVector}{\mathbf{ \precisionScalar}}
\newcommand{\precisionMatrix}{\mathbf{J}}
\newcommand{\pseudotargetScalar}{\widetilde{y}}
\newcommand{\pseudotargetVector}{\mathbf{ \pseudotargetScalar}}
\newcommand{\pseudotargetMatrix}{\mathbf{ \widetilde{Y}}}
\newcommand{\rank}[1]{\text{rank}\left(#1\right)}
\newcommand{\rayleighDist}[2]{\mathcal{R}\left(#1|#2\right)}
\newcommand{\rayleighSamp}[1]{\mathcal{R}\left(#1\right)}
\newcommand{\responsibility}{r}
\newcommand{\rotationScalar}{r}
\newcommand{\rotationVector}{\mathbf{ \rotationScalar}}
\newcommand{\rotationMatrix}{\mathbf{R}}
\newcommand{\sampleCovScalar}{s}
\newcommand{\sampleCovVector}{\mathbf{ \sampleCovScalar}}
\newcommand{\sampleCovMatrix}{\mathbf{s}}
\newcommand{\scalarProduct}[2]{\left\langle{#1},{#2}\right\rangle}
\newcommand{\sign}[1]{\text{sign}\left(#1\right)}
\newcommand{\sigmoid}[1]{\sigma\left(#1\right)}
\newcommand{\singularvalue}{\ell}
\newcommand{\singularvalueMatrix}{\mathbf{L}}
\newcommand{\singularvalueVector}{\mathbf{l}}
\newcommand{\sorth}{\mathbf{u}}
\newcommand{\spar}{\lambda}
\newcommand{\trace}[1]{\text{tr}\left(#1\right)}
\newcommand{\BasalRate}{B}
\newcommand{\DampingCoefficient}{C}
\newcommand{\DecayRate}{D}
\newcommand{\Displacement}{X}
\newcommand{\LatentForce}{F}
\newcommand{\Mass}{M}
\newcommand{\Sensitivity}{S}
\newcommand{\basalRate}{b}
\newcommand{\dampingCoefficient}{c}
\newcommand{\mass}{m}
\newcommand{\sensitivity}{s}
\newcommand{\springScalar}{\kappa}
\newcommand{\springVector}{\boldsymbol{ \kappa}}
\newcommand{\springMatrix}{\boldsymbol{ \mathcal{K}}}
\newcommand{\tfConcentration}{p}
\newcommand{\tfDecayRate}{\delta}
\newcommand{\tfMrnaConcentration}{f}
\newcommand{\tfVector}{\mathbf{ \tfConcentration}}
\newcommand{\velocity}{v}
\newcommand{\sufficientStatsScalar}{g}
\newcommand{\sufficientStatsVector}{\mathbf{ \sufficientStatsScalar}}
\newcommand{\sufficientStatsMatrix}{\mathbf{G}}
\newcommand{\switchScalar}{s}
\newcommand{\switchVector}{\mathbf{ \switchScalar}}
\newcommand{\switchMatrix}{\mathbf{S}}
\newcommand{\tr}[1]{\text{tr}\left(#1\right)}
\newcommand{\loneNorm}[1]{\left\Vert #1 \right\Vert_1}
\newcommand{\ltwoNorm}[1]{\left\Vert #1 \right\Vert_2}
\newcommand{\onenorm}[1]{\left\vert#1\right\vert_1}
\newcommand{\twonorm}[1]{\left\Vert #1 \right\Vert}
\newcommand{\vScalar}{v}
\newcommand{\vVector}{\mathbf{v}}
\newcommand{\vMatrix}{\mathbf{V}}
\newcommand{\varianceDist}[2]{\text{var}_{#2}\left( #1 \right)}
\newcommand{\vecb}[1]{\left(#1\right):}
\newcommand{\weightScalar}{w}
\newcommand{\weightVector}{\mathbf{ \weightScalar}}
\newcommand{\weightMatrix}{\mathbf{W}}
\newcommand{\weightedAdjacencyMatrix}{\mathbf{A}}
\newcommand{\weightedAdjacencyScalar}{a}
\newcommand{\weightedAdjacencyVector}{\mathbf{ \weightedAdjacencyScalar}}
\newcommand{\onesVector}{\mathbf{1}}
\newcommand{\zerosVector}{\mathbf{0}}
$$
High Profile Advances
Dual Process Models
Thinking Fast and Slow [ edit ]
../slides/diagrams/Thinking,_Fast_and_Slow.jpg}{40%}
The Righteous Mind [ edit ]
The Elephant and its Rider [ edit ]
Models and Emulation
Next slide represents cold reading.
blog post on The Mechanistic Fallacy .
VIDEO
The Elephant and its Rider [ edit ]
Unconscious Bias and System Zero
blog post on System Zero .
The Mechanical Elephant [ edit ]
Deep Learning [ edit ]
DeepFace [ edit ]
The DeepFace architecture (Taigman et al. 2014) consists of layers that deal with translation and rotational invariances. These layers are followed by three locally-connected layers and two fully-connected layers. Color illustrates feature maps produced at each layer. The neural network includes more than 120 million parameters, where more than 95% come from the local and fully connected layers.
Deep Learning as Pinball [ edit ]
Sometimes deep learning models are described as being like the brain, or too complex to understand, but one analogy I find useful to help the gist of these models is to think of them as being similar to early pin ball machines.
In a deep neural network, we input a number (or numbers), whereas in pinball, we input a ball.
Think of the location of the ball on the left-right axis as a single number. Our simple pinball machine can only take one number at a time. As the ball falls through the machine, each layer of pins can be thought of as a different layer of ‘neurons’. Each layer acts to move the ball from left to right.
In a pinball machine, when the ball gets to the bottom it might fall into a hole defining a score, in a neural network, that is equivalent to the decision: a classification of the input object.
An image has more than one number associated with it, so it is like playing pinball in a hyper-space .
Learning involves moving all the pins to be in the correct position, so that the ball ends up in the right place when it’s fallen through the machine. But moving all these pins in hyperspace can be difficult.
In a hyper-space you have to put a lot of data through the machine for to explore the positions of all the pins. Even when you feed many millions of data points through the machine, there are likely to be regions in the hyper-space where no ball has passed. When future test data passes through the machine in a new route unusual things can happen.
Adversarial examples exploit this high dimensional space. If you have access to the pinball machine, you can use gradient methods to find a position for the ball in the hyper space where the image looks like one thing, but will be classified as another.
Probabilistic methods explore more of the space by considering a range of possible paths for the ball through the machine. This helps to make them more data efficient and gives some robustness to adversarial examples.
The Hindoo Earth [ edit ]
{
{../slides/diagrams/ai/big-data}{100%}{
<img class="
" src=“../slides/diagrams/ai/rude-goldbergs-self-operating-napkin.gif” width=“100%” height=“auto” align=“center” style=“background:none; border:none; box-shadow:none; display:block; margin-left:auto; margin-right:auto;vertical-align:middle”>
References
Taigman, Yaniv, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. 2014. “DeepFace: Closing the Gap to Human-Level Performance in Face Verification.” In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition . https://doi.org/10.1109/CVPR.2014.220 .
Please enable JavaScript to view the comments powered by Disqus.